博士学位論文

速効性インスリン分泌促進薬：ミチグリニド
—糖尿病治療における併用薬としての有用性評価—

Rapid-acting insulin secretagogue: Mitiglinide
- evaluation of the usefulness of mitiglinide combined with antidiabetic drugs
for the treatment of diabetes-

博士（薬学）・学位論文
2018 年 3 月
赤羽 研二（kenji Akahane）

Doctor of Philosophy, Ph.D., Graduate School of Pharmaceutical Science,
Tokyo University of Pharmacy and Life Science.
目次

略語一覧 ... 5
緒言 ... 6
1. 第 1 章 インスリン抵抗性改善薬（メトホルミン、ピオグリタゾン）との併用効果 .. 12
 1.1 序論 .. 12
 1.2 メトホルミンとの併用効果 ... 13
 1.2.1 実験材料 .. 13
 1.2.2 試験方法 .. 14
 1.2.3 結果 .. 15
 1.3 ピオグリタゾンとの併用効果 ... 17
 1.3.1 実験材料 .. 17
 1.3.2 試験方法 .. 18
 1.3.3 結果 .. 19
 1.4 考察 ... 21
 1.5 章括 ... 22
2. 第 2 章 α-グルコシダーゼ阻害薬：ボグリボースとの併用効果 .. 24
 2.1 序論 ... 24
 2.2 実験材料 .. 24
 2.2.1 実験動物および選択理由 ... 24
 2.2.2 使用薬物 .. 25
 2.3 試験方法 .. 25
 2.3.1 STZ-NA ラットにおける経口スコロース負荷試験 (OSTT) でのボグリボースとミチグリニドの併用効果（単回投与） ... 25
 2.3.2 ZDF ラットにおけるボグリボースとミチグリニドの併用効果（反復投与） ... 26
 2.3.3 膵ラングヘルツ島の病理学的解析 .. 28
 2.3.4 血液検体の生化学パラメーターの測定 .. 29
 2.3.5 肝臓中脂質含量の測定 .. 30
 2.3.6 統計解析 .. 30
 2.4 結果 ... 31
 2.4.1 STZ-NA ラットにおける OSTT 時のボグリボースとミチグリニドの併用効果 ... 31
 2.4.2 ZDF ラットにおけるボグリボースとミチグリニドの併用効果 32
 2.5 考察 ... 38
 2.6 章括 ... 42
3. 第 3 章 SGLT2 阻害薬（ダバグリフロジン、カナグリフロジン）との併用効果 .. 43
 3.1 序論 ... 43
6. 謝辞.. 79
7. 主論文目録.. 80
8. 参考文献目録... 80
9. 博士学位申請論文審査... 81
10. 引用文献 ... 82
略語一覧

<table>
<thead>
<tr>
<th>略語</th>
<th>訳語</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>area under the curve</td>
</tr>
<tr>
<td>CMC</td>
<td>carboxymethyl cellulose</td>
</tr>
<tr>
<td>DPP-IV</td>
<td>dipeptidyl peptidase-4（EC3.4.14.5）</td>
</tr>
<tr>
<td>GLP-1</td>
<td>glucagon-like peptide-1</td>
</tr>
<tr>
<td>GHb</td>
<td>glycohemoglobin（hemoglobin A1c）</td>
</tr>
<tr>
<td>HbA1c</td>
<td>hemoglobin A1c</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>MC</td>
<td>methyl cellulose</td>
</tr>
<tr>
<td>NA</td>
<td>nicotinamide</td>
</tr>
<tr>
<td>OGTT</td>
<td>oral glucose tolerance test</td>
</tr>
<tr>
<td>OSTT</td>
<td>oral sucrose tolerance test</td>
</tr>
<tr>
<td>PPAR</td>
<td>peroxisome proliferator-activated receptor</td>
</tr>
<tr>
<td>SD</td>
<td>Sprague Dawley</td>
</tr>
<tr>
<td>SGLT1</td>
<td>sodium-glucose cotransporter 1</td>
</tr>
<tr>
<td>SGLT2</td>
<td>sodium-glucose cotransporter 2</td>
</tr>
<tr>
<td>STZ</td>
<td>streptozotocin</td>
</tr>
<tr>
<td>SU</td>
<td>sulfonylurea</td>
</tr>
<tr>
<td>SUR1</td>
<td>sulfonylurea receptor 1</td>
</tr>
<tr>
<td>ZDF</td>
<td>Zcker diabetic fatty</td>
</tr>
<tr>
<td>ZF</td>
<td>Zucker fatty</td>
</tr>
</tbody>
</table>
緒言
糖尿病の歴史は古く、多尿、口渇、化膿症を伴う病態とされ、病名は古代ギリシャの医師が多尿の状態をたとえて、常に水が流れ出るサイフォンを意味するギリシャ語 diabetes という言葉を使用したことによる[1]。日本においても平安時代の「小右記」に藤原道長について、「昼夜なく水を飲みたくなる、口が渇いて脱力感がある。しかし食欲は以前と変わりはない」と記載されており、糖尿病を罹患していたと考えられている[2]。人類の歴史の進展とともに糖尿病患者は増加し、近年では、患者数が年々史上最高を更新する悪循環をたどっている。現時点での患者数は約4.2億人に達し、1980年のそれの約4倍に増加している[3]（Fig. 1）。

Fig.1 The unrelenting march of diabetes % prevalence and number of adults with diabetes by WHO region in 1980 and 2014. This figure was quoted from a document of reference 3.

糖尿病主要原因はインスリン抵抗性の増加および膵ランゲルハンス島β細胞機能不全によるインスリン分泌能低下を特徴とする2型糖尿病患者の増加で、2030年にはこの患者数が5.5億人まで増加すると推定されている[3-5]。一方、糖尿病医療の発展も目覚ましく、特に薬物治療は異なる薬理作用を有する薬物が登場している。経口血糖降下薬がビグアナイド薬とスルホニルウレア（SU）薬に限られていた時代に比べ、直近の20年前間で多大な進歩があった[6]。糖尿病の治療には運動
療法およびインスリン補充に加え、経口血糖降下薬の使用が標準的な薬物治療法となっている。現在、我が国において、膵臓ランゲルハンス島 \(\beta \) 細胞の膜表面にある ATP 依存性 K\(^+\)チャネルのスルホニール尿素受容体（SUR）に結合し、インスリンを分泌することにより血糖値を低下させる \(\text{SU} \) 薬、肝臓での糖新生を抑制し、筋肉および脂肪細胞へのグルコースの取り込みを増大させることで血糖値を低下させるビグアナイド薬、\(\alpha\)-glucosidase を阻害し二糖類のグルコースへの加水分解を阻害することで小腸からのグルコース吸収量を減少させ食後の高血糖を是正する \(\alpha\)-glucosidase 阻害薬（\(\alpha\)-GI）、脂肪細胞の核内受容体 PPAR\(\gamma \) 受容体を刺激し、インスリン抵抗性を改善することで高血糖を改善するビオグリタゾン、\(\text{SU} \) 薬と同様に SUR に結合し、インスリンを早期かつ短期間に分泌させ食後の高血糖を改善する速効性インスリン分泌促進薬（グリニド薬）、dipeptidyl peptidase-IV（DPP-IV）を阻害することで活性型 glucagon-like peptide-1（GLP-1）を維持しインスリン分泌促進とグルカゴン分泌抑制作用を示す DPP-IV 阻害薬、腎臓の sodium-glucose cotransporter 2（SGLT2）を阻害することで尿からのグルコースの再吸収を抑制し、尿中へのグルコース排出を促進させる SGLT2 阻害薬などが治療に用いられ、単独投与はもちろんとして、様々な組み合わせで併用されている（Fig. 2）。これら薬物における糖尿病治療の最終目標は高血糖に起因する合併症の予防といっても過言ではない。しかしながら、作用機序の異なる薬物での併用療法は、相乗的な血糖低下作用による低血糖リスクのみならず、メトホルミンとビオグリタゾンでは胃腸症状、ケトアシドーシスおよび心不全や膀胱がんなどのリスク、\(\alpha\)-GI は下痢などの消化器系の副作用、SGLT2 阻害薬は尿路感染症、ミチグリニドは膵臓ランゲルハンス島 \(\beta \) 細胞の疲弊などの副作用を含めた各薬物の有害事象を薬物併用で補完できることが重要となる[7-10]。
Fig. 2 Selection of an oral hypoglycemic drug according to disease condition.
This figure was quoted from a document of reference 96.

薬物治療において、約 2 カ月間の血糖の平均値を反映する HbA1c 値の低下を目指標とした治療が標準的に行われている[11]。しかしながら、HbA1c での評価は血糖値の変動が大きい 2 カ月間あるいは、変動値の小さい 2 カ月間でも、血糖の平均値が一致すると同じ値を示すことが問題となる。血糖値の変動に最も大きな影響を与えるのは食後の高血糖で、この食後高血糖は酸化ストレス発生の要因となる。酸化ストレスはインスリン抵抗性およびインスリン分泌能低下を惹起し、更なる高血糖を生じさせることで症状の悪循環を形成する[12]。HbA1c 値の減少は血糖レベル全体への食後血糖値の相対的寄与率を上昇させると考えられている[13]。更に食後高血糖は心血管系障害リスクおよび網膜症だけでなく、特定の癌の発症との関連も指摘されている[14-19]。この食後血糖値の急激な増大を抑制することは HbA1c レベルの目標値を達成することと同様に病態の進展抑制に重要と考えられる[20-26]。そのため、HbA1c 値の制御に加え、食後高血糖の是正を介した病態の進展抑制は糖尿病の薬物治療戦略で重要となる。现状の経口血糖降下薬のうち、食後高血糖の改善に用いられる薬物は α-GI 薬、グリニド薬、DPP-IV 阻害薬で、これららのうち、食後の早期にインスリンを分泌させるのはグリニド薬のみとなる。正常なインスリン分泌は糖負荷などの血中グルコース濃度の上昇による刺激後の 10 分以内に生じる第 1 の分泌相と、これに続く持続的な第 2 の分泌相から成る。糖尿病患者では第 1 の分泌相が消失するだけでなく、第 2 の分泌相ではインスリ
インスリン分泌が遅延かつ減弱される。インスリンは血糖低下作用だけでなく肝臓での糖新生抑制に加え細胞内の代謝を同化を促進させ、その結果、脂質およびタンパク質消化の代謝にも深く関与することが示されている。糖尿病患者ではインスリン分泌能の低下により、他のホルモンとのバランスが障害され生体の恒常性への悪影響が誘発される[27]。グリニド薬の早期かつ短期間のインスリン分泌作用を介して、食後のインスリン分泌動態が生理的な作用と同様に維持されることは他の薬物には無い特徴のため、併用を考える際にグリニド薬の適用は大きな治療上の利点となる。

Fig. 3 The effects of mitiglinide.

ミチグリニドはグリニド薬であり、速効性のインスリン分泌促進作用で食後の血糖上昇を抑制する[28]。この短時間作用により、SU薬のインスリン分泌促進作用と比較すると低血糖を生じ難く、かつ腎臓ラングハンス島β細胞への制約的なインスリン分泌への負荷が少ないことが本薬の特徴である[29]。ミチグリニドは食後早期のインスリン分泌を介して第1の分泌相を改善し、インスリン分泌をより生理学的なパターンに近似させる[30]。ミチグリニドは、α-GI薬あるいはDPP-IV阻害薬といった作用機序の異なる2型糖尿病治療薬と併用される。これら薬物とのミチグリニドの併用はそれぞれの単独投与よりも効率的な血糖降下作用の発揮と低血糖の回避を可能とする[31-34]。このように臨床での効果に関する報告はあるものの、動物モデルを用いた基礎研究の一連の薬物併用によるメカニズムおよび有用性についての解析は十分にされていない。

本研究目的は、各種糖尿病モデル動物を用いてミチグリニドとインスリン抵抗性改善薬、α-GI薬、SGLT2阻害薬およびDPP-IV阻害薬との併用効果を解析する。
ことで、糖尿病治療のための併用薬としてのミチグリニドの有用性を検証することとした。そこで、本試験では2型糖尿病モデル動物であるニコチンアミド前処置ストレプトゾトシン誘発2型糖尿病ラット（STZ-NAラット）、Zucker diabetic fatty（ZDF）ラットおよび肥満・高インスリン血症モデルZucker fatty（ZF）ラットを用いた。

<table>
<thead>
<tr>
<th>実験動物モデル</th>
<th>特徴</th>
<th>使用した章</th>
</tr>
</thead>
<tbody>
<tr>
<td>STZ-NAラット</td>
<td>非肥満型
ストレプトゾトシンおよびニコチンアミド処置により、インスリン分泌不全を呈し、グルコース負荷後に高い血糖上昇を示す、2型糖尿病モデル動物。</td>
<td>2,3,4章</td>
</tr>
<tr>
<td>ZFラット</td>
<td>肥満型
遺伝子のミスセンス変異から生じる多食による肥満を伴い、高脂血症、高インシュリン血症、高レプチン血症を呈する。</td>
<td>1,3章</td>
</tr>
<tr>
<td>ZDFラット</td>
<td>肥満型
ZFラットの亜系、遺伝子のミスセンス変異から生じる症状に加えて明確な高血糖を示す自然発症2型糖尿病モデル動物。</td>
<td>2章</td>
</tr>
</tbody>
</table>

Fig.4 The features of each animal model.
This photograph was quoted from Charles River Laboratories Japan, Inc and Japan SLC, Inc homepage.

各動物モデルの特徴および本研究で使用した章についてFig.4に示す。STZ-NAラットは、腸ランゲルハンス島β細胞の迅速かつ不可逆的な細胞死を引き起こすストレプトゾトシンおよびその効果を減弱するニコチンアミドを処置することで作製され、インスリン分泌不全を呈し、グルコース負荷後に高い血糖上昇を示す2型糖尿病モデルである[35, 36]。STZ-NAラットは、日本人（アジア人）の糖尿病患者に多い非肥満型かつインスリン分泌不全の病態を模倣する実験動物として汎用される[37]。ZFラットはレプチン受容体をコードする遺伝子のミスセンス変異を持ち、多食による肥満を伴い、肥満モデル動物として位置づけられる。生後3週齢から外観より同腹の正常仔との区別が付くほどの肥満状態を呈し始め、加齢
にともない発症個体と正常個体との体重差は拡大する。これに伴い、軽度の耐糖能異常、高インスリン血症および中性脂肪血症を呈するモデル動物として実験に用いられている[38]。ZDF ラットはZF ラットの亜系であり、遺伝子のミスセンス変異から生じる症状に加えて、明確な高血糖を示す自然発症2型糖尿病モデル動物である[39]。ZDF ラットは、加齢に伴う糖尿病関連の生化学パラメーター変化並びに膵ラングルハンス島β細胞の減少およびその機能低下等の組織学的変化を示し[40, 41]、糖尿病の病態研究および薬物治療の有効性を検証するモデル動物として使用されている。

これらの実験動物を用い、ミチグリニドの薬物併用での食後血糖値の抑制作用およびインスリン分泌に及ぼす効果について検討した。
1. 第1章インスリン抵抗性改善薬（メトホルミン、ピオグリタゾン）との併用効果

1.1 序論

ビグアナイド薬のメトホルミンは、肝臓での糖新生を抑制し筋肉および脂肪細胞へのグルコースの取り込みを増加させることでインスリン抵抗性を改善する[7, 42]（Fig. 5）。チアゾリジン薬のピオグリタゾンは、脂肪細胞の核内受容体PPARγに刺激薬として作用し、インスリン抵抗性を改善する[7, 43]（Fig. 5）。インスリン抵抗性の改善で、主に食間および夜間の高血糖が改善される[7, 42, 43]。これらの薬物は、肥満などの合併でインスリン抵抗性が上昇しており、かつ内因性インスリン分泌能は保持されている患者に有効とされる[7]。これらの薬物にミチグリニドを併用することで、メトホルミンあるいはピオグリタゾンの単独投与よりも食後早期のインスリン分泌に伴う食後の高血糖の改善効果が加わると期待される。さらに、ミチグリニドの単独投与よりも加わる薬物の作用でインスリンの感受性改善の効果も期待される。

本章ではZFラットを用い、ミチグリニドにメトホルミンあるいはピオグリタゾンと併用の血糖値および血漿インスリン値に及ぼす効果について検討した。

Fig. 5 The effects of metformin and pioglitazone.
1.2 メトホルミンとの併用効果

1.2.1 実験材料

1.2.1.1 実験動物および選択理由

本研究において、各種血糖降下薬の併用効果の検討は基本、単回投与試験にて検討を行った。しかしながら、インスリン抵抗性改善薬であるメトホルミンは薬効発現には時間を要するため、メトホルミンは反復投与で十分に効果が発現している状態で検討を行った。他の薬物で使用している STZ-NA ラットは加齢に伴い症状が著しく悪化し、反復投与には適さないため、メトホルミンとミチグリニドを併用した際の併用効果確認には安定して、高インスリン血症および中性脂肪血症を呈する ZF ラットを選択した[38]。ZF ラットは肥満モデル動物として位置づけられ、生後 3 週齢から外観より同腹の正常仔との区別が付くほどに肥満状態を呈し始め、加齢にともない発症個体と正常個体との体重差は拡大する。これに伴い、高インスリン血症および中性脂肪血症を呈するモデル動物として実験に用いられている[38]。

実験では、日本チャールスリバー株式会社（神奈川）から購入した ZF 雄性ラットおよびその正常対照動物である lean 雄性ラットを用いた。動物は、恒温・恒湿および 12 時間照明サイクルの下、水および飼料（CE-2 飼料、日本クレア）を自由に摂取させながら飼育した。本研究の実験計画はキッセイ薬品工業株式会社中央研究所動物実験委員会の審査および承認を受けた。本研究での実験動物の飼育および実験は、「実験動物の飼養および保管等に関する基準」[44] 並びにキッセイ薬品工業株式会社中央研究所動物実験指針にしたがって実施された。

1.2.1.2 使用薬物

ミチグリニドカルシウム水和物（キッセイ薬品工業株式会社、松本）は、0.5%カルボキシメチルセルロースナトリウム（CMC）（和光純薬工業株式会社、大阪）に、メトホルミン塩酸塩（Kemprotec Limited 社、Cumbria, United Kingdom）は大塚蒸留水（DW）（大塚製薬工場株式会社、徳島）に懸濁し、実験動物への経口投与に使用した。その他の試薬は和光純薬工業株式会社の製品を使用した。
1.2.2 試験方法

1.2.2.1 ZF ラット

13 週齢時に経口グルコース負荷試験（OGTT）を実施し、血漿中グルコース濃度を測定した。その後、ZF ラットの空腹時血糖値とグルコース投与後の 0 から 1 時間目までのグルコース濃度曲線下面積（AUC）平均値が群間でいずれも同程度となるように、4 グループに群分けした。比較検討のための正常群として Zucker lean ラットを使用した。

1.2.2.2 ZF ラットでの OGTT（1 g/kg）時のメトホルミンとミチグリニドの併用効果

実験動物を以下に示す 5 試験群に群分けした。正常群は lean ラットを使用し、0.5% CMC および DW を投与した。コントロール群は ZF ラットを使用し、0.5% CMC および DW を投与した。ミチグリニド群は ZF ラットを使用し、ミチグリニド（1 mg/kg）および DW を投与した。メトホルミン群は ZF ラットを使用し、0.5% CMC およびメトホルミン（300 mg/kg）を投与した。併用群は ZF ラットを使用し、ミチグリニド（1 mg/kg）およびメトホルミン（300 mg/kg）を投与した。

インスリン抵抗性改善薬の薬効発現には時間を要することから、メトホルミンは反復投与により十分に効果が発現している状態で検討を行った。この状態下でミチグリニドを単回投与し、OGTT を行った。試験方法の概略を Fig. 6 に示す。メトホルミン群とその併用群にメトホルミンを 14 日間反復経口投与し、投与 15 日目に絶食下にて OGTT を実施した。ミチグリニドを経口投与した後、直ちにグルコース溶液を経口投与（1.0 g/kg）した。採血はグルコース負荷直前（Pre），負荷 0.25，0.5，1，2，3 および 5 時間目にポイン尾静脈から採血した。（すべてのポイントにおいて 100 μL の採血を行った）。
Fig. 6 Outline of combined test of mitiglinide and metformin.

1.2.2.3 血液検体の生化学パラメータの測定

血液検体の生化学パラメータの測定にはラボアッセイ™グルコース®（和光純薬工業株式会社, 大坂）を，血液中インスリン濃度測定にはラットインスリン測定キット®（株式会社森永生科学研究所, 神奈川）をそれぞれ用いて測定した。

1.2.2.4 統計解析

統計解析には，SAS system version 9.3（SAS Institute Inc., North Carolina, USA）を使用し，二元配置分散分析（two-way ANOVA）を実施した。病態モデルラットの経ログルコース負荷試験より算出した各 AUC を二元配置分散分析の目的変数として取り扱い，ミチグリニドとメトホルミンを要因とした統計解析を実施した。それぞれの要因に対する解析結果よりミチグリニドとメトホルミンの主効果を評価し，両薬物の交互作用の解析によって相加および相乗効果を決定した。危険率は 5%未満を有意水準（両側検定）として採用した。

1.2.3 結果

1.2.3.1 ZF ラットにおける糖負荷時のメトホルミンとミチグリニドの併用効果

OGTT では，コントロール群の血糖値は 30 分目から 1 時間目で最大値に達し，2 時間目から 3 時間目には投与前の値付近まで戻った（Fig. 7A）。この ZF ラットにおいてミチグリニドは OGTT での血糖低下作用を示した。糖負荷 2 時間目までの血糖値の推移は，コントロール群に対して低値を示し，糖負荷 2 時間目までの血糖 AUC（AUC₀₋₂h）は，コントロール群のそれに対して低下した（ミチグリニド：F(1, 44)= 9.7, P = 0.0032, Fig. 7A, 7B, two-way ANOVA）。インスリン抵抗性改善薬であるメトホルミンの単独投与群の血糖値はコントロール群のそれよりも低値で推移し，AUC₀₋₂h は低下した（メトホルミン：F(1, 44) = 8.45, P= 0.0057, Fig. 7A, 7B, two-way ANOVA）。このメトホルミンにミチグリニドを併用すると，それぞれの単独投与に対して投与 2 時間目までの各時点における血糖値は低値となった（Fig. 1A）。ミチグリニドとの併用投与による AUC₀₋₂h の交互作用有意差が認められな
かったことからミチグリニドとの併用投与による血糖低下作用はそれぞれの単独投与の作用に対して相加的な効果を示すと考えられた（ミチグリニド+メトホルミン：F(1, 44)= 0.67, P= 0.4181, Fig. 7B, two-way ANOVA）。

Fig.7 Effects of mitiglinide, metformin, and their combination on plasma glucose levels in OGTT (1 g/kg).
(A) Temporal transition of plasma glucose levels during OGTT in ZF rats. (B) Plasma glucose AUC$_{0-2h}$ during OGTT in ZF rats. Data are means ±SEM of 12 animals. N: normal, C: control, M: mitiglinide, Met: metformin.

ZFラットはインスリン抵抗性を示すことが知られているが、本実験結果でも、血漿インスリン値は、正常動物のそれよりも高いレベルであったが、OGTTで、血漿インスリン値のさらなる上昇が観察された（Fig. 8A）。OGTT時、高インスリン血症を示すZFラットでもミチグリニド群で糖負荷後1時間目までのインスリン分泌がコントロール群のそれよりも高値となった（Fig. 8A）。ミチグリニド群のインスリン AUC$_{0-1h}$は、コントロール群のそれよりも増加した（ミチグリニド：F(1, 44) = 5.15, P= 0.0283, Fig. 8A, 8B, two-way ANOVA）。

メトホルミン投与群ではコントロール群に対し、空腹時の血中インスリンレベルの低下および糖負荷1時間目以降のインスリン分泌量が低値となり、インスリンAUC$_{0-1h}$を減少させた（メトホルミン：F(1, 44)= 4.24, P= 0.0454, Fig. 8A, 8B, two-way ANOVA）。一方、メトホルミンとミチグリニドとの併用投与群ではインスリン分泌のAUC$_{0-1h}$は、コントロール群と同レベルとなり、ミチグリニド単独投与群の
それよりも低値となった。両薬物の併用投与では、ミチグリニドのインスリン分泌促進作用とメトホルミンのインスリン分泌量の減少効果の両者の作用が反映された結果と考えられた（ミチグリニド+メトホルミン：F (1, 44)= 1.71, P= 0.1977, Fig. 8B, Two-way ANOVA）。

Fig.8 Effects of mitiglinide, metformin, and their combination on plasma insulin levels in OGTT (1 g/kg).

(A) Temporal transition of plasma insulin levels during OGTT in ZF rats. (B) Plasma insulin AUC0–1h during OGTT in ZF rats. Data are means ±SEM of 12 animals. N: normal, C: control, M: mitiglinide, Met: metformin.

1.3 ピオグリタゾンとの併用効果

1.3.1 実験材料

1.3.1.1 実験動物および選択理由

本実験においてもインスリン抵抗性改善薬であるピオグリタゾンは薬効発現には時間を要するため、ZF ラットを用い、ピオグリタゾンの反復投与により十分に効果が発現している状態で検討を行った。ZF ラットについては 1.2.1.1 を参照。

1.3.1.2 使用薬物

ミチグリニドカルシウム水和物（キッセイ薬品工業株式会社，松本）およびピオグリタゾン（武田薬品工業株式会社，大阪）は，0.5%カルボキシメチルセルロース
ースナトリウム（CMC）（和光純薬工業株式会社，大阪）に懸濁し，実験動物への
経口投与に使用した。その他の試薬は和光純薬工業株式会社の製品を使用した。

1.3.2 試験方法

1.3.2.1 ZF ラット

1.3.2.2 ZF ラットでの経口液体飼料負荷試験（15 kcal/kg）時のビオグリタゾンとミチグリニドの併用効果

ビオグリタゾンは血糖値への効果に加え，脂質への効果も報告されているため[7, 43]
糖負荷試験はヒトの食事を模した液体飼料負荷試験で行った。液体飼料はオリエンタル酵母工業株式会社の No.38（デキストリン・マルトース配合：タンパク
質 19%，脂質 18%，炭水化物 55%）を使用した。実験動物を以下に示す 5 試験群
に群分けした。正常群は lean ラットを使用し，0.5% CMC および 0.5% CMC を投
与した。コントロール群は ZF ラットを使用し，0.5% CMC および 0.5% CMC を投
与した。ミチグリニド群は ZF ラットを使用し，ミチグリニド（1 mg/kg）および
0.5% CMC を投与した。ビオグリタゾン群は ZF ラットを使用し，0.5% CMC およ
びビオグリタゾン（3 mg/kg）を投与した。併用群は ZF ラットを使用し，ミチグ
リニド（1 mg/kg）およびビオグリタゾン（3 mg/kg）を投与した。

インスリン抵抗性改善薬の薬効発現には時間を要することから，ビオグリタゾ
ンは反復投与により十分に効果が発現している状態で検討を行った。この状態下
でミチグリニドを単回投与し，ヒトの食事を模した液体飼料負荷試験で行った。

試験方法の概要を Fig. 9 に示す。ビオグリタゾン群とその併用群にビオグリタゾ
ンを 7 日間毎日投与した。液体飼料負荷試験は投与 8 日目に絶食下にて実施した。
8 日目はミチグリニドを経口投与した後，液体飼料を経口投与（15 kcal/kg）した。
グルコース負荷直前（Pre），負荷後 0.25，0.5，1，2，3 および 5 時間目に尾静脈か
ら採血した。（すべてのポイントにおいて 100 μL の採血を行った）。
Fig. 9 Outline of combined test of mitiglinide and pioglitazone.

1.3.2.3 血液検体の生化学パラメータの測定

1.2.2.3 の方法を参照

1.3.2.4 統計解析

統計解析には、SAS system version 9.3（SAS Institute Inc., North Carolina, USA）を使用し二元配置分散分析を実施した。病態モデルラットの経口液体飼料負荷試験より算出された各 AUC を二元配置分散分析の目的変数として取り扱い、ミチグリニドとピオグリタゾンを要因とした統計解析を実施した。それぞれの要因に対する解析結果よりミチグリニドとピオグリタゾンの主効果を評価し、両薬物の交互作用の解析によって相加および相乗効果を決定した。危険率は 5%未満を有意水準（両側検定）として採用した。

1.3.3 結果

1.3.3.1 ZF ラットにおける液体飼料負荷時のピオグリタゾンとミチグリニドの併用効果

液体飼料負荷により、コントロール群の血糖値は負荷後 15 分目から 30 分目で最大値に達し、2 時間目から 3 時間目の間には投与前の値付近まで戻った（Fig. 10A）。ミチグリニドは液体飼料負荷後でも OGTT と同様な血糖低下作用を示し、その AUC_{0-2h} はコントロール群のそれよりも低値となった（ミチグリニド：F(1, 56)= 11.17, P= 0.0015, Fig. 10A, 10B, two-way ANOVA）。インスリン抵抗性改善薬ピオグリタゾンの単独投与群の血糖値は、コントロール群のそれよりも低値で、
AUC_0-2hも減少した（ピオグリタゾン: F(1, 56)= 60.32, P< 0.0001, Fig. 10A, 10B, two-way ANOVA）。ピオグリタゾンとミチグリニドを併用すると、投与2時間目までの各時点の血糖値がそれぞれの単独投与でのそれよりも低値となった（Fig. 10A）。この併用投与によるAUC_0-2hの交互作用は認められなかったことから、ミチグリニドとの併用投与による血糖低下作用はそれぞれの単独投与の作用に対して相加的なものと考えられた（ミチグリニド+ピオグリタゾン: F(1, 56)= 0.17, P= 0.6817, Fig. 10B, two-way ANOVA）。

Fig.10 Effects of mitiglinide, pioglitazone, and their combination on plasma glucose levels in oral meal tolerance test (15 kcal/kg).
(A) Temporal transition of plasma insulin levels during oral meal tolerance test in ZF rats.
(B) Plasma insulin AUC_0-1h during oral meal tolerance test in ZF rats. Data are means ±SEM of 14-15 animals. N: normal, C: control, M: mitiglinide, P: pioglitazone.

血漿インスリンレベルでもOGTTと同様のミチグリニドによるインスリン分泌促進作用が液体飼料負荷試験でも観察された（ミチグリニド: F(1, 56)= 4.81, P= 0.0324, Fig. 11A, 11B, two-way ANOVA)。ピオグリタゾンのみの処置でも血漿インスリンレベルは常に低値で、インスリン AUC_0-1hを減少させた（ピオグリタゾン: F(1, 56)= 15.86, P= 0.0002, Fig. 11A, 11B, two-way ANOVA）。両薬物の併用投与によるインスリン分泌のAUC_0-1hはコントロール群のそれと同レベルであり、ミチグリニド単独投与群のそれよりも低値となった。メトホルミン投与の結果と同様に,
両薬物の併用投与では血漿インスリンレベルはコントロール群のそれと同様のものとなった。つまり、ミチグリニドのインスリン分泌促進作用とピオグリタゾンのインスリン分泌量の減少効果が反映された結果と考えられた（ミチグリニド+ピオグリタゾン：F (1, 56) = 0.77, P= 0.3840, Fig. 11B, Two-way ANOVA）。

Fig.11 Effects of mitiglinide, pioglitazone, and their combination on plasma insulin levels in oral meal tolerance test (15 kcal/kg).

(A) Temporal transition of plasma insulin levels during oral meal tolerance test in ZF rats.

(B) Plasma insulin AUC₀⁻¹h during oral meal tolerance test in ZF rats. Data are means ±SEM of 14-15 animals. N: normal, C: control, M: mitiglinide, P: pioglitazone.

1.4 考察

インスリン抵抗性を改善するメトホルミンあるいはピオグリタゾンとミチグリニドとの併用の結果について検討した。本実験で用いられたZF ラットの血漿インスリン値は正常動物のそれよりも高いレベルにあるにもかかわらず、血糖値がOGTT または液体飼料負荷後に正常群の血糖値レベルよりも高い推移を示す。このことは、ZF ラットが高インスリン血症患者の病態を模した実験動物モデルであることを示している。ZF ラットは空腹状態で、すでに血漿インスリンレベルが高い状態にありながら（両負荷試験下でも）インスリン分泌能を保持している。血漿インスリンレベルが高い状態でも、ミチグリニドはインスリン分泌の促進を介して血糖降下作用を示すことが示された。メトホルミンとピオグリタゾンは、いず
れもインスリン抵抗性改善薬である。これら薬物は単回投与では効果を発揮しにくく、連投することで効果が表れてくる。そのため、本研究ではミチグリニドとの併用に先立ち、これら薬物の反復投与を行った。ZF ラットへのメトホルミンおよびピオグリタゾンの反復投与から、血漿インスリンレベルが全体的に低下したにもかかわらず血糖値の改善がみられたことは、両薬物の反復投与でインスリン抵抗性改善作用が反映されたためと考えられた。ミチグリニドはこれら薬物との併用で、ミチグリニド単独投与の場合よりもインスリン分泌量が減少した。このことから、ミチグリニドの併用によるインスリン節約効果が示された。これら薬物により、インスリン抵抗性が改善された。その結果、空腹時血糖値および随時血糖値が、メトホルミンおよびピオグリタゾンにより改善され、高血糖による糖毒性が解除された結果と考えられる。メトホルミンあるいはピオグリタゾンとの併用時にはこれら薬物により改善された血糖値に応じてミチグリニドのインスリン分泌量が減少したためと考えられた。ミチグリニドは、血中グルコース濃度（血糖値）に依存したインスリン分泌を示す[30]。今回の結果から、インスリン抵抗性改善薬にとっては食間の血糖値を低下させる作用に、ミチグリニドの食後高血糖の降下作用が加わることで単独投与よりも効果的な血糖改善が期待できる。

一般に、スルホニルウレア系およびグリニド系のインスリン分泌促進薬では長期間にわたるインスリン分泌が脾ラングレンハルス島β細胞への負荷を生じさせ、血糖値の改善に必要な十分量のインスリン分泌が減少する（2次無効）可能性を完全に否定することができない。しかしながら、今回の結果では、ミチグリニドとインスリン抵抗性改善薬の併用でインスリンを節約する効果が確認されたことから、血糖降下作用を発揮させると同時に脾ラングレンハルス島β細胞への負荷をより軽減させることができた。これら薬物の組合せによる長期投与で、2次無効発現が減少することが示唆される。

1.5 章括

本章ではZF ラットを用い、メトホルミンまたはピオグリタゾンとミチグリニドの併用の効果を血糖値と血漿インスリン値を指標として検討した。

(1) ミチグリニドの単回投与は肥満および高インスリン血症を発症するZF ラット
で食後早期のインスリン分泌上昇による食後血糖上昇抑制作用を示した。

(2) ZF ラットでのメトホルミンあるいはピオグリタゾンの反復投与はインスリン抵抗性改善に伴う高インスリン血症の改善し、それに伴う食後高血糖改善効果を示した。

(3) ZF ラットでミチグリニドとメトホルミンあるいはピオグリタゾンとの併用は、ミチグリニドの血糖降下作用を相加的に増強した。

(4) ZF ラットでミチグリニドとメトホルミンあるいはピオグリタゾンとの併用は、食後のインスリン分泌量を減少させた。つまり、食後の血糖値増大へのインスリン分泌量を節約した。

これらのことから、ミチグリニドとインスリン抵抗性改善薬の組合せによって、ミチグリニド単独投与よりも少ないインスリン分泌量で強力な血糖降下作用を示すことを示した。この薬物併用は、食後血糖値が高いレベルになるインスリン抵抗性改善薬使用患者あるいは夜間および空腹時の血糖値が高いミチグリニド使用患者に有益な治療効果をもたらすと考えられた。
2. 第2章 α-グルコシダーゼ阻害薬：ボグリボースとの併用効果

2.1 序論

α-GI薬のボグリボースは、α-グルコシダーゼを阻害する。そのため、二糖類からグルコースへの加水分解が阻止されるので小腸からのグルコース吸収が抑制され、食後の血糖が是正されることとなる[45]（Fig. 12）。ボグリボースによる糖の吸収抑制とミチグリニドによる食後早期のインスリン分泌の組合せにより、強力な食後の血糖値上昇の抑制が期待される。

本章において、まずミチグリニドとボグリボースの併用単回投与の効果をSTZ-NAラットにて検討した。次に、食後高血糖の継続的な是正が糖尿病の病態進展抑制と結びつく可能性について、ZDFラットを用い、これら薬物の併用反復投与の効果を検討した。

Fig. 12 The effects of voglibose.

2.2 実験材料

2.2.1 実験動物および選択理由

STZ-NAラットはインスリン分泌不全を呈し、グルコース負荷後に高い血糖上昇を示す2型糖尿病モデルラットである[35, 36]。STZ-NAラットは日本人（アジア人）の糖尿病患者に多い、非肥満型でインスリン分泌不全の病態を模倣する実験動物として汎用される[37]。本試験ではミチグリニドとボグリボースの併用単回投与の効果をSTZ-NAラットで検討した。

ZDFラットは、レプチン受容体をコードする遺伝子のミスセンス変異を持ち、肥満に加えて明確な高血糖を示す自然発症2型糖尿病モデル動物である[39]。ZDF
ラットは、加齢に伴う糖尿病関連の生化学パラメーター変化並びに膵ランゲルハンス島β細胞の減少およびその機能低下等の組織学的変化を示し[40, 41]、糖尿病の病態研究および薬物治療の有効性を検証するモデル動物として使用されている。そこで本研究では両薬物の併用反復投与が糖尿病進展での生化学的指標の変化に及ぼす効果および膵ランゲルハンス島β細胞の病理組織学的変化に及ぼす効果について検討した。

実験では、日本エスエルシー株式会社（浜松）から購入した7週齢のSprague Dawley（SD）系雄性ラットおよび日本チャールスリバー株式会社（神奈川）から購入したZDF雄性ラットとその正常対照であるlean雄性ラットを用いた。実験動物に関する倫理およびそれらの飼育や実験については動物は1.2.1に準じた。

2.2.2 使用薬物

ミチグリニドカルシウム水和物（キッセイ薬品工業株式会社, 松本）およびボグリボース（和光純薬工業株式会社, 大阪）は、0.5%カルボキシメチルセルロースナトリウム（CMC）（和光純薬工業株式会社）に懸濁して実験動物に経口投与に使用した。ストレプトゾシンはSigma-Aldrich社（St. Louis, MO, USA）、ニコチンアミドおよびその他の試薬は和光純薬工業株式会社（大阪）から購入した。

2.3 試験方法

2.3.1 STZ-NAラットにおける経ロスクロース負荷試験（OSTT）でのボグリボースとミチグリニドの併用効果（単回投与）

2.3.1.1 ニコチンアミド前処置ストレプトゾシン誘発2型糖尿病ラット（STZ-NA rats）の作製

8週齢のSD系雄性ラットに生理食塩水にて溶解したニコチンアミド溶液150mg/kgを腹腔内投与し、15分後にクエン酸緩衝液（0.05M,pH=4.5）にて溶解したストレプトゾシン溶液50mg/kgを尾静脈から投与することで2型糖尿病の病態モデルを作製した。正常動物にはクエン酸緩衝液のみ投与した（正常群）。9週齢の時にOGTTを実施し、血漿中グルコース濃度を測定した。空腹時血糖値とグル
コース負荷後0から1時間目までのAUCが各群間で同程度となるように、実験動物を4つのグループに群分けした（コントロール群、ミチグリニド群、ボグリボース群、併用群）。

2.3.1.2 STZ-NAラットにおける経口スクロース負荷試験（OSTT, 2.5 g/kg）

動物は正常群を含めて以下の群分けされた。正常群はクエン酸緩衝液のみ投与したラットを使用し、0.5%CMCおよびDWを投与した。コントロール群はSTZ-NAラットを使用し、0.5%CMCおよび0.5%CMCを投与した。ミチグリニド群はSTZ-NAラットを使用し、ミチグリニド（1 mg/kg）および0.5%CMCを投与した。ボグリボース群はSTZ-NAラットを使用し、0.5%CMCおよびボグリボース（0.2 mg/kg）を投与した。併用群はSTZ-NAラットを使用し、ミチグリニド（1 mg/kg）およびボグリボース（0.2 mg/kg）を投与した。

OSTT（2.5 g/kg）は、群分けOGTTの4日後に絶食下にて実施された。採血はグルコース負荷直前（Pre）、負荷後0.25、0.5、1、2、3および5時間目に尾静脈から行った。

2.3.2 ZDFラットにおけるボグリボースとミチグリニドの併用効果（反復投与）

2.3.2.1薬物単独投与試験（実験Ⅰ）

試験方法の概略をFig.13に示す。ZDFおよびleanラットを7週齢時より制限給餌（回数：朝夕2回/日、給餌条件：90分間自由摂餌）に馴化させた。投薬は14週齢時からミチグリニド（0.3 mg/kg）あるいはボグリボース（0.2 mg/kg）の単独反復投与を11週間実施した。コントロール群（ZDFラット）および正常群（leanラット）には、媒体（0.5%CMC）を同様に投与した。薬物あるいは媒体は、給餌開始直前に経口投与した。最終投与の翌日に採血し、生化学的指標または病理組織学的変化の評価のために腎臓および肝臓がそれぞれ採取された。
実験 I

群構成
- Normal I (Lean)
- Control I
- Mitiglinide 0.3 mg/kg
- Voglibose 0.2 mg/kg

実験 II

群構成
- Normal II (Lean)
- Control II
- Mitiglinide 0.3 mg/kg + Voglibose 0.2 mg/kg

<table>
<thead>
<tr>
<th>週齢</th>
<th>反復投与, 2 回/日</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>群分け 1g OGTT</td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 13 Outline of combined test of mitiglinide and voglibose.

2.3.2.2 薬物併用投与実験（実験 II）

試験方法の概略を Fig. 13 に示す。ZDF および lean ラットを 7 週齢時より制限給餌（回数：朝夕 2 回/日，給餌条件：90 分間自由摂餌）に馴化させた。投薬は 14 週齢時よりミチグリニド（0.3 mg/kg）およびボグリボース（0.2 mg/kg）の併用反復投与を 11 週間実施した。コントロール群（ZDF ラット）および正常群（lean ラット）には，媒体（0.5%CMC）を同様に処置した。薬物は，制限給餌開始直前に経口投与した。最終投与の翌日に採血し，生化学的指標または病理組織学的変化の評価のために膵臓および肝臓がそれぞれ採取された。

2.3.2.3 ラット採血および膵臓，肝臓の摘出，並びに膵組織の標本切片の作製

ラットを絶食後，イソフラン（フォーレン®，アボットジャパン）麻酔下で開腹し，腹部大動脈より EDTA 採血管に血液を採取後，直ちに肝臓および膵臓を摘出した。血液は一部を糖化ヘモグロビン（GHb）測定用とし，残りを 4°C, 1000 xg で 10 分間遠心し，血漿を得た。肝臓は，重量測定後，液体窒素中で凍結させ，肝臓の中性脂質測定まで -80°C で保存した。摘出した膵臓は直ちに 3.5% 中性緩衝ホルマリン（和光純薬）中で固定した。固定された膵組織はパラフィン包埋後，約 4 μm の厚さに薄切することで標本切片を作製し，各種染色に用いた。
2.3.3 膵ランゲルハンス島の病理学的解析

2.3.3.1 膵ランゲルハンス島の二重免疫染色によるβ細胞および非β細胞の解析

標本切片を、抗ヒトグルカゴン・ウサギポリクローナル抗体（3000倍希釈；Dako），抗ヒトソマトスタチン・ウサギポリクローナル抗体（1000倍希釈；Dako）および抗ヒト膵ポリペプチドAb-1・ウサギポリクローナル抗体（50倍希釈；Lab Vision Corporation）の混合抗体と室温で40分間反応させ、トリス塩酸緩衝液（TBS）で洗浄した後、labeled streptavidin biotinylated antibody kit/alkaline phosphatase（LSAB+kit/AP, Dako）を用いてビオチン標識抗ウサギIgG抗体、アルカリフォスファターゼ（AP）標識ストレプトアビジャンを順次反応させた後、フクシンで赤色に発色させた。蒸留水で切片を洗浄し、3%過酸化水素水（ Peroxidase-Blocking Reagent; Dako）を用いて内因性ペルオキシダーゼを不活性化した。抗インスリン・モルモットポリクローナル抗体（3000倍希釈；Dako）と室温で40分間反応させ、PBSで洗浄した後、ペルオキシダーゼ（HRP）標識抗モルモットIgG抗体（100倍希釈；Dako）を室温で30分間処置した後、diamino benzidine（DAB, 同仁化学研究所）で発色させた。流水で洗浄後、切片は、ヘマトキシリンによる核染色を行い、脱水封入後、観察に共した。

β細胞の陽性面積は、抗インスリン抗体を用いて染色された面積とし、非β細胞の陽性面積は、抗グルカゴン抗体、抗ソマトスタチン抗体と抗膵ポリペプチド抗体による混合抗体を用いて染色された面積とした。各標本切片の膵ランゲルハンス島面積を求め、その面積当たりの陽性細胞面積の比（%）を算出した。陽性細胞面積の比の測定は、1標本切片当たり10個の膵島について行った。

2.3.3.2 膵島の線維化の解析

膵ランゲルハンス島の線維化の解析は、標本切片にマッソン・トリクローム染色を施すことにより行った。膵ランゲルハンス島の線維化陽性面積は、青色に染色された面積とし、β細胞および非β細胞の解析と同様にその面積当たりの陽性面積の比（%）を算出した。
2.3.3.3 TUNEL法による膵ランゲルハンス島細胞のアポトーシスの解析

TUNEL法によるアポトーシスの解析には、TACS2TdT-DAB In Situ Apoptosis Detection Kit（Trevigen）を用いた。標本切片のタンパク質分解処理のため、cytoninを4℃で一晩処理し、蒸留水で洗浄した後、3%過酸化水素水加メタノール液で内因性ペルオキシダーゼを不活化した。PBSで洗浄した後、TdT緩衝液にTdTとビオチン標識dNTPを加えたTdT反応液で37℃、120分間反応させた。TdT反応を停止させた後、HRP標識ストレプトアビジンを37℃、10分間処置した。DABの発色の後、メチルグリーンで核染色を行い、脱水封入処理を行った。陽性細胞の測定は、各切片の膵組織中におけるすべての膵ランゲルハンス島（11-26個）についてカウントし、膵ランゲルハンス島当りの陽性細胞数を求めた。

2.3.3.4 膵ランゲルハンス島の炎症性細胞浸潤の解析

標本切片は、0.01 Mクエン酸緩衝液（pH6.0）中で10分間のマイクロウェーブによる抗原の賦活化処理を行った。蒸留水で洗浄の後、3%過酸化水素水で内因性ペルオキシダーゼを不活化した。PBSによる洗浄後、抗ラットCD68（ED-1）・マウスモノクローナル抗体（100倍希釈；AbD Serotec）で4℃、一晩反応させた。二次抗体のHRP標識抗IgG抗体（50倍希釈；Dako）と室温で3分間処反応させた後、DABで発色させた。流水で洗浄した後、ヘマトキシリンによる核染色を施し、脱水封入処理を行った。陽性細胞の測定は、各切片の膵組織中におけるすべての膵ランゲルハンス島（11-26個）についてカウントし、膵ランゲルハンス島当りの陽性細胞数を求めた。

2.3.3.5 光学顕微鏡による観察と画像解析

染色後、それぞれの切片は顕微鏡デジタルカメラ付きオリンパス光学顕微鏡（オリンパス光学工業）並びに画像解析ソフトWinROOF（三谷コーポレーション）を用いて免疫組織学的解析を行った。

2.3.4 血液検体の生化学パラメーターの測定
血漿中のインスリン、グルコース、トリグリセリド、総コレステロール、遊離脂肪酸およびアディポネクチン濃度は、それぞれラットインスリン測定キット（株式会社森永生科学研究所、神奈川）ラボアッセイ™グルコース®, トリグリセライド E-テストワコー®, コレステロール E-テストワコー®, NEFA C-テストワコー®（以上、和光純薬工業株式会社、大阪）および Rat Adiponectin ELISA kit®（メルクミリポア、USA）を用いて測定した。GHb（HbA1c）は GHb 測定装置 HLC-723GbV Alc2.2（東ソー、東京）を用いて測定した。

2.3.5 肝臓中脂質含量の測定

Bligh と Dyer の方法[46]に従って、肝組織片（80-100 mg）をクロロホルム - メタノール（1:2 vol/vol）溶液で十分にホモジナイズした後、クロロホルムと蒸留水を加えよく攪拌し、以降、ホモジネートを、クロロホルム層と水層の二層にて抽出操作を繰り返した。この操作でクロロホルム層に脂質を溶解させ、肝組織中の全脂質を抽出した。回収されたクロロホルム層は、窒素ガスの通気下で乾固させ、得られた残渣を肝臓中脂質とした。脂質量の測定時には、残渣を 2-プロパノールで再溶解し、トリグリセライド E-テストワコー®並びにコレステロール E-テストワコー®を用いて脂質の測定を行った。得られた値と肝組織の湿重量から肝組織中のトリグリセリドおよび総コレステロール含量を算出した。

2.3.6 統計解析

STZ-NA ラットの血漿中グルコースおよびインスリン濃度について 1.2.2.4 の記載と同様にミチグリニドとポグリポースを要因とした二元配置分散分析を実施した。統計処理方法は 1.2.2.4 の記載に準じた。体重値の推移、血液中の生化学的な評価項目、肝臓中の脂質含量および病理組織学的な評価項目それぞれについて、Student’s t 検定を用いてコントロール群と他の群との間の平均値の差を検定した。すべての統計解析は、SAS system version 9.3 (SAS Institute Inc., North Carolina, USA) を用いて実施した。危険率は 5%未満を有意水準（両側検定）として採用した。
2.4 結果

2.4.1 STZ-NA ラットにおける OStT 時のボグリボースとミチグリニドの併用効果

STZ-NA ラットにおける OStT 後の血糖推移は、ミチグリニド投与により正常群の血糖推移と同様のものとなった。つまり、ミチグリニド投与により、AUC_{0-2h} はコントロール群よりも低値となった（ミチグリニド：F(1, 20)= 17.01, \(P = 0.0005 \), Fig. 14A, 14B two-way ANOVA）。ミチグリニド投与によりインスリン分泌不全に陥った STZ-NA ラットでもコントロール群のインスリン分泌に対し高値で推移し、インスリン AUC_{0-1h} を増大させた（ミチグリニド：F(1.20)= 4.55, \(P = 0.0455 \), Fig. 15A, 15B, two-way ANOVA）。

Fig.14 Effects of mitiglinide, voglibose, and their combination on plasma glucose levels in OStT (2.5 g/kg).
(A) Temporal transition of plasma glucose levels during OStT in STZ-NA rats. (B) Plasma glucose AUC_{0-2h} during OStT in STZ-NA rats. Data are means ±SEM of 6 animals. N: normal, C: control, M: mitiglinide, V: voglibose.

STZ-NA ラットへの OStT 後の血糖値は、ボグリボース投与により投与後 2 時間目まで正常群の血糖値を下回り、AUC_{0-2h} もコントロール群のそれよりも低値となった（ボグリボース：F(1, 20)= 45.74, \(P < 0.0001 \), Fig. 14A, 14B, two-way ANOVA）。ボグリボース群のインスリン分泌についてもコントロール群のそれよりも低値で推移したので、AUC_{0-1h} も低値となった（ボグリボース：F(1, 20)= 7.3, \(P = 0.0137 \),
Fig. 15 Effects of mitiglinide, voglibose, and their combination on plasma insulin levels in OSTT (2.5 g/kg).

(A) Temporal transition of plasma insulin levels during OSTT in STZ-NA rats. (B) Plasma insulin AUC$_{0-1h}$ during OSTT in STZ-NA rats. Data are means ±SEM of 6 animals. N: normal, C: control, M: mitiglinide, V: voglibose.

ミチグリニドとボグリボースの併用投与群の血糖値はそれぞれの単独投与よりも低値を示し、糖負荷前値レベルを維持した。両薬物の併用投与による血糖低下作用は交互作用に有意差を認めなかったことから相加的と考えられた（ミチグリニド+ボグリボース：F(1, 20)= 2.44, P= 0.1340, Fig. 14B, two-way ANOVA）。インスリン分泌量でも両薬物の併用による交互作用は認められなかった（ミチグリニド+ボグリボース：F(1, 20)= 0.35, P= 0.5607, Fig. 15B, two-way ANOVA）。ミチグリニドとの併用はミチグリニド単独よりは弱いもののインスリン分泌を伴った。これはボグリボースの血糖低下作用およびミチグリニドの血糖値に依存したインスリン分泌促進作用が相加的に作用した結果と考えられた。

2.4.2 ZDFラットにおけるボグリボースとミチグリニドの併用効果

2.4.2.1 血液および肝臓中の生化学的評価項目の変化

薬物単独投与実験（実験 I）で正常群およびコントロール群間で体重差が認めら
れた。コントロール群の遊離脂肪酸濃度（NEFA）およびアディポネクチンを除くすべての血液指標（血糖値, GHb, TG, 総コレステロール値）および肝臓中のトリグリセリド（TG）および総コレステロール値でも正常群のそれよりも高値を示した（Table 1）。

実験 I では、コントロール群の血漿グルコース濃度に対し、ミチグリニド単独群では血漿グルコース濃度が低下する傾向が観察された（ミチグリニド：P = 0.1047, Table 1）。一方、ボグリボース単独群の血漿グルコース濃度は、コントロール群のそれよりも低値を示した（Table 1）。実験終了時における各薬物単独群の GHb は低下傾向を示した（ミチグリニド：P = 0.2444, ボグリボース：P = 0.0893, Table 1）。その他の血液中および肝臓中の指標でもコントロール群とミチグリニド単独群またはボグリボース単独群との間に有意な差は観察されなかった（Table 1）。

Table 1 Summary of body weight, blood and liver parameters in Experiment I (single drug administration experiment).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal</th>
<th>Control</th>
<th>Mitiglinide 0.3 mg/kg</th>
<th>Voglibose 0.2 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight (g)</td>
<td>332.0 ± 5.1 #</td>
<td>432.1 ± 6.2</td>
<td>431.4 ± 8.1</td>
<td>429.1 ± 6.9</td>
</tr>
<tr>
<td>GHB (%)</td>
<td>3.6 ± 0.9 #</td>
<td>6.1 ± 0.6</td>
<td>4.8 ± 0.2</td>
<td>4.4 ± 0.1</td>
</tr>
<tr>
<td>Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPG (mg/dL)</td>
<td>80.9 ± 0.7 #</td>
<td>255.4 ± 51.7</td>
<td>148.0 ± 18.2</td>
<td>114.2 ± 5.2 #</td>
</tr>
<tr>
<td>Insulin (ng/mL)</td>
<td>1.8 ± 0.3 #</td>
<td>6.2 ± 1.7</td>
<td>8.3 ± 1.4</td>
<td>4.4 ± 0.1</td>
</tr>
<tr>
<td>Triglyceride (mg/dL)</td>
<td>66.9 ± 6.1 #</td>
<td>501.9 ± 37.5</td>
<td>514.1 ± 87.4</td>
<td>454.4 ± 59.2</td>
</tr>
<tr>
<td>Total Cholesterol (mg/dL)</td>
<td>72.3 ± 1.6 #</td>
<td>161.0 ± 10.1</td>
<td>137.9 ± 16.1</td>
<td>146.8 ± 12.9</td>
</tr>
<tr>
<td>NEFA (mEq/L)</td>
<td>0.9 ± 0.1</td>
<td>1.1 ± 0.1</td>
<td>0.9 ± 0.1</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>Adiponectin (μg/mL)</td>
<td>20.1 ± 0.9</td>
<td>18.2 ± 2.3</td>
<td>19.4 ± 1.8</td>
<td>19.6 ± 1.4</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglyceride (mg/g tissue)</td>
<td>2.7 ± 0.7 #</td>
<td>19.4 ± 1.9</td>
<td>23.6 ± 5.6</td>
<td>14.7 ± 3.4</td>
</tr>
<tr>
<td>Total Cholesterol (mg/g tissue)</td>
<td>0.8 ± 0.2 #</td>
<td>1.6 ± 0.1</td>
<td>1.6 ± 0.3</td>
<td>1.3 ± 0.3</td>
</tr>
</tbody>
</table>

Data are mean ± standard error of the mean (SEM) of 5-6 animals. #: p < 0.05 vs. control I (Student’s t test). M0.3 : mitiglinide 0.3 mg/kg, V0.2 : voglibose 0.2 mg/kg

一方、薬物併用投与実験（実験 II）では、併用群の体重はコントロール群のそれよりも低値となった（Table 2）。これはミチグリニドとボグリボースの併用反復投与により体重増加が抑制された結果と考えられた。さらに、実験 II の終了時のコ
ントロール群で GHb 上昇、血漿グルコース濃度上昇および血漿インスリン濃度の継時的上昇が観察された。ミチグリニドとボグリボースの併用反復投与によりこれらのパラメータが抑制されることが示された（Table. 2）。実験 II の終了時に、コントロール群のアディポネクチン濃度は正常群のそれよりも低値となったが、ミチグリニドとボグリボースの併用反復投与群では、低下したアディポネクチンの濃度が正常群レベルまで回復した（Table. 2）。実験 II の血中および肝臓中の TG と総コレステロール値は、コントロール群で増加したのに対し（Table. 2）、併用群のそれは低値となった（Table. 2）。これらの結果から、単独では十分な改善効果を示さない投与量のミチグリニドとボグリボースを併用反復投与することにより、血液および肝臓中の評価項目の値が改善された（Table. 2）。

Table.2 Summary of body weight, blood and liver parameters in Experiment II (drug combination administration experiment).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group</th>
<th>Normal II</th>
<th>Control II</th>
<th>M 0.3 + V 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight (g)</td>
<td></td>
<td>312.2 ± 6.6 #</td>
<td>438.2 ± 5.9</td>
<td>405.8 ± 7.4 #</td>
</tr>
<tr>
<td>GHb (%)</td>
<td></td>
<td>3.7 ± 0.0 #</td>
<td>6.0 ± 0.7</td>
<td>4.2 ± 0.0 #</td>
</tr>
<tr>
<td>Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPG (mg/dL)</td>
<td></td>
<td>111.9 ± 3.5 #</td>
<td>290.5 ± 55.9</td>
<td>146.0 ± 5.4 #</td>
</tr>
<tr>
<td>Insulin (mg/mL)</td>
<td></td>
<td>1.2 ± 0.1 #</td>
<td>7.5 ± 1.4</td>
<td>4.3 ± 0.3 #</td>
</tr>
<tr>
<td>Triglyceride (mg/dL)</td>
<td></td>
<td>102.9 ± 10.6 #</td>
<td>490.0 ± 47.3</td>
<td>490.0 ± 53.0</td>
</tr>
<tr>
<td>Total Cholesterol (mg/dL)</td>
<td></td>
<td>82.6 ± 2.2 #</td>
<td>173.2 ± 5.8</td>
<td>178.7 ± 6.3</td>
</tr>
<tr>
<td>NEFA (mEq/L)</td>
<td></td>
<td>1.2 ± 0.1</td>
<td>1.1 ± 0.1</td>
<td>1.1 ± 0.1</td>
</tr>
<tr>
<td>Adiponectin (μg/dL)</td>
<td></td>
<td>29.2 ± 1.6 #</td>
<td>22.3 ± 1.4</td>
<td>20.7 ± 1.2 #</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglyceride (mg/g tissue)</td>
<td></td>
<td>5.3 ± 0.5 #</td>
<td>25.6 ± 2.6</td>
<td>15.1 ± 1.1 #</td>
</tr>
<tr>
<td>Total Cholesterol (mg/g tissue)</td>
<td></td>
<td>1.6 ± 0.1 #</td>
<td>2.3 ± 0.2</td>
<td>1.8 ± 0.1</td>
</tr>
</tbody>
</table>

Data are mean ± standard error of the mean (SEM) of 6 animals. # : p < 0.05 vs. control II (Student’s t test). M0.3 : mitiglinide 0.3 mg/kg, V0.2 : voglibose 0.2 mg/kg

2.4.2.2 膵ランゲルハンス島の病理組織学的評価

実験 I および実験 II のコントロール群で、病態の進展に伴い ZDF ラットの膵ランゲルハンス島に占める β 細胞の面積の割合が低下し、線維化面積の割合が上昇した（Fig. 16, 17, 18A, 18B）。これに対し、11 週間のミチグリニドとボグリボース併用反復投与によって、膵ランゲルハンス島 β 細胞の面積の割合の低下と線維化
面積の割合の上昇がともに抑制された（Fig. 18B）。一方、ミチグリニドの単独投与で膵ランゲルハンス島に占める \(\beta \) 細胞の面積の割合の低下が改善されたものの、線維化面積の割合に対するミチグリニドの効果は観察されなかった（Fig. 18A）。ポグリボース単独投与では、膵ランゲルハンス島の病理組織学的な改善効果は観察されなかった（Fig. 18A）。

非 \(\beta \) 細胞面積は、実験 I および実験 II ともにコントロール群で病理組織学的な変性が観察された。しかしながら、それぞれの薬物の単独投与あるいは併用投与は非 \(\beta \) 細胞面積に影響しなかった（Fig. 18A, 18B）。

Fig. 16 Observation of pancreatic islets by insulin immunostaining.
Anti-insulin antibody staining are shown in brown. Anti-glucagon antibody·anti-somatostatin antibody·anti-PP antibody staining are shown in red. M 0.3: Mitiglinide 0.3 mg/kg, V 0.2: Voglibose 0.2 mg/kg.
Fig. 17 Observation of pancreatic islets by Masson's Trichrome staining. Masson trichrome staining are shown in blue. M 0.3: Mitiglinide 0.3 mg/kg, V 0.2: Voglibose 0.2 mg/kg.

Fig. 18 The area of the pancreatic β cells, non-β cells and the fibrosis area of the pancreatic islets.

The area of the pancreatic β cells is the area stained with the anti-insulin antibody and the area of the non-β cells is the area stained using a mixed antibody of anti-glucagon antibody, anti-somatostatin antibody and anti-pancreatic polypeptide antibody. The fibrosis area of the pancreatic islets was analyzed using Masson trichrome staining. In each case, the positive cell area ratio (%) per islet area of each specimen section was calculated.
A: Experiment I (single drug administration experiment), B: Experiment II (drug combination administration experiment). Data are mean ± standard error of the mean (SEM) of 5–6 animals. #: p < 0.05 vs control (Student’s t test). M0.3: mitiglinide 0.3 mg/kg, V0.2: voglibose 0.2 mg/kg.

次に，膵ランゲルハンス島 β 細胞の増殖能と細胞死に対する薬物の効果について検討した（Table. 3, 4）。TUNEL 染色による細胞死に対して，コントロール群の陽性細胞数が正常群のそれより高値となり，ZDF ラットの病態進展に伴う膵ランゲルハンス島での死細胞数が増加した。一方, ミチグリニドの単独投与およびミチグリニドとボグリボースの併用投与は，増加した TUNEL 陽性細胞数を減少させた（Table. 3, 4）。

続いて，抗 CD68 抗体を用いて膵ランゲルハンス島における炎症反応について検討した。実験 I および実験 II とともにコントロール群で CD68 陽性単核細胞数（マクロファージ）が正常群より高値となった。つまり, ZDF ラットの膵ランゲルハンス島でマクロファージの増加が示された（Fig. 19, Table. 3, 4）。ボグリボースの単独投与並びにミチグリニドとボグリボースの併用投与は，膵ランゲルハンス島中の CD68 陽性単核細胞数を減少させた（Table. 3, 4）。

Fig. 19 Observation of pancreatic islets by CD68 (ED-1) staining.
CD68 (ED-1) staining are shown in blue. M 0.3: Mitiglinide 0.3 mg/kg, V 0.2: Voglibose 0.2 mg/kg.
Table 3 Summary of parameters in single drug administration experiment (Experiment I) by TUNEL method and CD68 immunostaining.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group</th>
<th>Normal I</th>
<th>Control I</th>
<th>Mitoglinide 0.3 mg/kg</th>
<th>Voglibose 0.2 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUNEL + cells / islets</td>
<td></td>
<td>0.44 ± 0.15 #</td>
<td>1.17 ± 0.15</td>
<td>0.43 ± 0.07 #</td>
<td>0.91 ± 0.13</td>
</tr>
<tr>
<td>CD68 + cells / islets</td>
<td></td>
<td>1.40 ± 0.29 #</td>
<td>5.91 ± 0.68</td>
<td>4.25 ± 0.56</td>
<td>3.12 ± 0.39 #</td>
</tr>
</tbody>
</table>

In each cases, parameters are indicated by the number of positive cells per islet cells. Data are mean ± standard error of the mean (SEM) of 5-6 animals. #: p < 0.05 vs. control I (Student’s t test). M0.3: mitoglinide 0.3 mg/kg, V0.2: voglibose 0.2 mg/kg.

Table 4 Summary of parameters in drug combination administration experiment (Experiment II) by TUNEL method and CD68 immunostaining.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group</th>
<th>Normal II</th>
<th>Control II</th>
<th>M0.3 + V0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUNEL + cells / islets</td>
<td></td>
<td>0.23 ± 0.06 #</td>
<td>0.80 ± 0.09</td>
<td>0.31 ± 0.06 #</td>
</tr>
<tr>
<td>CD68 + cells / islets</td>
<td></td>
<td>1.39 ± 0.25 #</td>
<td>5.88 ± 0.70</td>
<td>2.68 ± 0.33 #</td>
</tr>
</tbody>
</table>

In each cases, parameters are indicated by the number of positive cells per islet cells. Data are mean ± standard error of the mean (SEM) of 6 animals. #: p < 0.05 vs. control II (Student’s t test). M0.3: mitoglinide 0.3 mg/kg, V0.2: voglibose 0.2 mg/kg.

2.5 考察

STZ-NA ラットは、空腹時血糖値は正常動物のそれと同様の値になるものの、OSTT 後は正常群の血糖値よりも高い値で推移を示す。その一方で、血漿インスリン濃度は、正常群のそれよりも低下していた。これは本モデルラットの糖負荷後の高血糖がインスリン分泌不全に起因していることを示している。ボグリボースが対象とする食後高血糖を有する 2 型糖尿病患者の非肥満、インスリン分泌不全病態を反映できると考えられた[42]。ボグリボース投与でインスリン分泌がほとんど惹起されないにもかかわらず糖負荷後の血糖値の上昇が抑制されたことは、スクロースからグルコースへの変換が阻害された結果と考えられた。ミチグリニドおよびボグリボースとの併用では、ミチグリニド単独投与よりも少ないインスリ
ン分泌で、より効果的な血糖降下作用が観察された。上述したように、ボグリボースは消化管からのグルコース吸収を抑制することから、食後血糖値の上昇の度合いが小さくなる。その結果、ボグリボース投与により、血糖値に依存するインスリン分泌は、より少ないインスリン分泌量で血糖値を維持できることとなる。つまり、ボグリボースにより血糖値の上昇度合いが小さくなっているため、ミチグリニドによるインスリン分泌量も少量で血糖値の維持が可能となる。これらの結果から、それぞれの薬物のインスリン分泌に及ぼす効果が相加的に作用した結果と考えられた。第1章のインスリン抵抗性改善薬と同様に、両薬物の併用でインスリン分泌が節約されるため、脳ランゲルハンス島β細胞への負荷を軽減する可能性が示された。長期投与でも2次無効発現は減少すると考えられる。

STZ-NAラットにてミチグリニドおよびボグリボースの単回併用投与により効果が認められたので、ミチグリニドおよびボグリボースの単独反復投与並びに両薬物の併用反復投与を行い、ZDFラットの病態の進展に対するこれら薬物の有効性について評価した。今回用いた投与量および反復投与期間で、ミチグリニドあるいはボグリボースの単独投与は、糖尿病への病態進展抑制効果を示さなかった。

ZDFラットは肥満とともに高インスリン血症を呈する病態モデルとしても知られている[47, 48]。本実験でも、コントロール群のGhbと空腹時の血漿グルコース濃度は正常群のそれよりも上昇した。さらに、顕著な体重増加に加え、血漿TG濃度および総コレステロール濃度の上昇も観察された。これらのことから、ZDFラットは本研究での糖尿病の進展に対する薬物の評価に適したモデル動物と考えられた。しかしながら、今回の実験で観察されたこれら指標の変化が示すように、ZDFラットは重症糖尿病のモデルに位置付けられており[49, 50]、各薬物の単独投与では、十分な治療効果が示されなかったと考えられた。しかしながら、これら薬物の単独投与では糖尿病への十分な病態進展の抑制効果を示せない状態でも、両薬物の併用投与は、実験期間中の体重の増加、Ghbおよび空腹時血漿グルコース濃度の上昇を抑制し、かつ血漿インスリン濃度を低下させた。ZDFラットの体重増加と高インスリン血症の発症の間には、密接な関係があるとされている[47, 51]。ZDFラットでは、高インスリン血症が血糖値をさらに上昇させ、糖尿病の重症化の誘因となる[52]。両薬物の併用投与による体重増加の抑制と高インスリン血症の
改善は、糖尿病の進展を抑制する治療効果の一因になったと考えられる。

ZDF ラットでは、加齢に伴い肝臓で中性脂肪が蓄積される[47]。本実験でも肝臓中の TG 含量が増加した。その TG 含量の増加は、ミチグリニドおよびボグリボースの併用投与で抑制された。両薬物を併用しても血漿中の遊離脂肪酸濃度は影響されなかったことから、肝臓への遊離脂肪酸の取り込みが抑制されることで肝臓中の TG 含量を低下させた可能性は低いと考えられた[53]。つまり、ZDF ラットの高血糖状態の改善が肝臓中の TG 含量を減少させる可能性が示された。加えて、インスリンは肝臓での脂肪合成を促進させる因子なので[54]。本実験での両薬物の併用が ZDF ラットの高インスリン血症を改善させ、血中インスリン濃度が低下したことでの、肝臓中の TG 含量も減少したと考えられた。

アディポネクチンは脂肪細胞特異的に発現するタンパク質であり、血中アディポネクチン濃度は BMI 値および 2型糖尿病患者の症状の重症度に逆相関することが報告されている[55, 56]。糖尿病患者での体重および内臓脂肪の減少は、血中アディポネクチン濃度の低下を改善すると考えられる[57, 58]。したがって、両薬物の併用投与による血漿アディポネクチン濃度の上昇は、ZDF ラットの体重増加の抑制による可能性が示された。アディポネクチンは、糖尿病での高インスリン血症を緩解するだけでなく、肝臓中脂肪含量の増大を改善する作用も示すことから[55]、両薬物の併用投与による血漿アディポネクチン濃度の維持が、ZDF ラットの血漿インスリン濃度上昇および肝臓中 TG 含量増加の抑制に寄与したと考えられた。

さらに、糖尿病態進展期の膵臓の組織学的変化に及ぼす薬物投与の効果を解析した。ZDF ラットの膵ランゲルハンス島に占める β 細胞の面積の割合は、正常群のそれよりも低下した。これは、ZDF ラットの膵ランゲルハンス島 β 細胞の面積が糖尿病病態の進行に伴い減少する Jones らの報告と合致した[59]。インスリン抵抗性を含めた病態生理学的反応で、膵ランゲルハンス島 β 細胞に変性が生じると考えられている[52]。本研究では、ミチグリニドとボグリボースの併用投与が糖尿病の病態進展に伴い減少する膵ランゲルハンス島の β 細胞を維持し、膵ランゲルハンス島 β 細胞への組織学的保護効果が認められた。本実験で得られた知見と同様な効果は、インスリン抵抗性改善薬あるいはインスリン処置でも報告されており[60, 61]。ミチグリニドとボグリボースの併用による高血糖と高インスリン血
症の是正が、膵ランゲルハンス島β細胞を保護したと考えられた。

本実験では、ZDFラットの糖尿病進展に伴う膵ランゲルハンス島に占める線維化面積の割合の増大もミチグリニドおよびボグリボースの併用で減少した。膵ランゲルハンス島の線維化は、膵ランゲルハンス島でのβ細胞の面積比の減少と相反し、糖尿病病態の進展との関連が指摘されている[58]。両薬物の併用による糖尿病状態の是正は膵ランゲルハンス島β細胞の面積比の改善のみならず、その線維化病変への改善でも有益であることが示された。

膵ランゲルハンス島におけるアポトーシス細胞死について組織学的に検討した。その結果、ZDFラットの膵ランゲルハンス島におけるアポトーシス細胞死が誘発されることを見出した。この知見は、FinegoodやPickらの報告と一致した[60, 62]。膵ランゲルハンス島では糖尿病の病態が進行すると細胞死が促進され、β細胞の減少のため、高血糖に対応できる十分量のインスリン供給が困難になり、糖尿病病態の進展をより悪化させると考えられている[63]。高血糖そのものがアポトーシスを惹起する誘因の一つであることから[60]、両薬物の併用投与による高血糖状態の改善が膵ランゲルハンス島でのアポトーシス細胞死の増加を抑制した可能性がある。膵ランゲルハンス島の線維化の進展は、アポトーシス細胞死に惹起される組織変性の結果、誘発されたものでもあることから[59]、膵ランゲルハンス島のアポトーシス細胞死の抑制がその線維化の進展抑制にも大きく寄与したと考えられた。

ZDFラットの糖尿病が進展すると、膵ランゲルハンス島の線維化とともにCD68陽性単核細胞（マクロファージ）の浸潤が膵ランゲルハンス島内およびその周囲組織に見出されており、膵ランゲルハンス島における炎症性細胞浸潤の線維性組織成熟化への関与が注目されている[59]。本実験で、ZDFラットの膵ランゲルハンス島内のマクロファージ数が正常群のそれよりも増加した。ミチグリニドおよびボグリボースの併用投与は、膵ランゲルハンス島内のマクロファージ浸潤を減少させた。近年、慢性的な高血糖状態はマクロファージからの炎症性サイトカイン産生を促進させ、膵ランゲルハンス島の線維化およびβ細胞面積の減少を誘発し、膵ランゲルハンス島の変性に関わる可能性が示された[59]。つまり、ミチグリニドとボグリボースの併用投与による高血糖状態の改善は、マクロファージ浸
潤と膵ランゲルハンス島の線維化の進行を遅らせ、膵ランゲルハンス島の変性を抑制した可能性を示した。2型糖尿病患者でも膵ランゲルハンス島でCD68陽性単核細胞数の増加が見出されていることから[64, 65]、本実験で確認された組織学的な改善効果が臨床でも発揮されることに期待できる。

2.6章括

本章ではSTZ-NAラットを用い、ボグリボースとミチグリニドを単回併用した際の効果を血糖値と血清インスリン値で検討した。さらに、ZDFラットを用い、ボグリボースとミチグリニドを反復併用した際の生化学的効果および膵ランゲルハンス島β細胞への組織学的結果について検討した。

(1)インスリン分泌不全を来すSTZ-NAラットにおいて、ミチグリニドの単回投与は、食後早期のインスリン分泌上昇を介して食後の血糖値上昇を抑制した。

(2)STZ-NAラットへのボグリボース単回投与は、消化管のグルコース吸収量を減らさせ、食後の血糖値上昇を抑制することでインスリン分泌量を減少させた。

(3)STZ-NAラットへのミチグリニドおよびボグリボースの併用で、それぞれの単独投与よりも、相加的な血糖値の降下作用を示しながら、かつ食後インスリン分泌を節約した。

(4)ZDFラットへのミチグリニドおよびボグリボースの併用投与は、それぞれの単独投与では認められなかった生化学的指標および組織学的指標の改善効果を示した。

以上の結果から、ともに食後の過血糖を改善するミチグリニドとボグリボースの組合せは、それぞれの単独投与よりも強力な血糖降下作用した。さらに反復併用投与では糖尿病病態進展への抑制効果も示した。この併用は食後血糖上昇を是正したい患者、特に食後の血糖値のみが高値を示すIGT患者には食後の血糖上昇を強力に抑制でき、かつ食間の低血糖リスクが少ない有効な薬物併用となることを示唆している。
3. 第3章 SGLT2阻害薬（ダパグリフロジン、カナグリフロジン）との併用効果

3.1 序論

SGLT2阻害薬の尿糖排泄作用は血糖依存的であるため、食後高血糖時の糖排泄
量は増大すると考えられる。そこでミチグリニドを併用し、食後の血糖上昇を抑
制することは、SGLT2阻害薬の食後の急激な尿糖排泄を防ぐことができると期待
される。さらに、SGLT2阻害薬は尿糖排泄を介した血糖値の低下作用による2
次的なインスリン抵抗性改善および膵ランゲルハンス島β細胞の保護の可能性も
報告されているので[66]、第1および2章で観察されたようなミチグリニドのイン
スリン分泌への節約作用を示す可能性もある。

我が国では2017年の時点で5種6薬のSGLT2阻害薬（イプラグリフロジン、ダ
パグリフロジン、ルセオグリフロジン、トホグリフロジン、カナグリフロジン、
エンパグリフロジン）が使用されている。カナグリフロジン以外の5薬はSGLT2に
選択性が高いことが報告されている[67]。一方、カナグリフロジンはSGLT2阻害
作用に加え、弱いながらもSGLT1の阻害作用を併せ持つ[67, 68]。SGLT1は腎臓の
他に、小腸、心筋、骨格筋および脳に存在し、特に小腸ではグルコースおよびガ
ラクトースの吸収を担う[69]。カナグリフロジンは腎臓のSGLT1および2阻害に
による尿糖排泄促進作用を示すとともに、小腸でのSGLT1阻害作用を介してα-GI薬
と同様なグルコースの吸収抑制作用を示す。そのため、カナグリフロジンへのミ
チグリニドの併用では他の選択的SGLT2阻害薬とは異なる効果が発現する可能性
がある。そこで、SGLT2阻害薬とミチグリニドとの併用効果を確認するため、全
世界で広く使用されている選択的SGLT2阻害薬ダパグリフロジンとSGLT2阻害作
用に加え、SGLT1に対しても弱いながら阻害作用も併せ持つカナグリフロジンを
用いた[68]。実験では2型糖尿病モデル動物のSTZ-NAラットおよびZFラットを
用いてこれら薬物の効果を検討した。
3.2 実験材料

3.2.1 実験動物および選択理由

STZ-NA ラットの選択理由については 2.2.1 に準じた。SGLT2 阻害薬は血糖値低下作用に加え、インスリン抵抗性改善および膵ランゲルハンス島 β 細胞保護も報告されているので[66]、ミチグリニドのインスリン分泌促進に対して分泌量の節約作用を発揮する可能性が予測された。そこで、本実験では、SGLT2 阻害薬の反復投与で十分に尿糖排泄の効果が現れている状態でミチグリニドの効果を検討するために、ZF ラットを用いることにした。

実験には、日本エスエルシー株式会社（浜松）から購入した 7 週齢の Sprague Dawley（SD）系雄性ラットおよび日本チャールズリバー株式会社（神奈川）から購入した ZF 雄性ラットとその正常対照となる lean 雄性ラットを用いた。実験動物の倫理、その飼育および実験については動物は 1.2.1.1 に準じた。

3.2.2 使用薬物

ミチグリニドはキッセイ薬品工業株式会社にて合成したものを使用した。ダパグリフロジンは Shanghai Haoyuan Chemexpress（Shanghai, 中国）社製を使用した。カナグリフロジンは A Chemtek Inc（Worcester, USA）社製を使用した。ミチグリニドは 0.5%カルボキシメチルセルロース（CMC）溶液に懸濁した。ダパグリフロジンは 0.5% CMC 溶液に懸濁した。
ジンおよびカナグリフロジンはそれぞれ蒸留水に溶解した。ストレプトゾシンはSigma-Aldrich社（St. Louis, MO, USA）ニコチンアミドおよびその他の試薬は和光純薬工業株式会社（大阪）から購入した。

3.3 試験方法

3.3.1 ZF ラットにおける OGTT 時のダパグリフロジンとミチグリニドの併用効果

3.3.1.1 ZF ラット

1.2.2.1 の方法に準じた。

3.3.1.2 ZF ラットでの経口グルコース負荷試験（OGTT，1 g/kg）

動物は以下に示す 5 つの試験群に群分けした。正常群は lean ラットを使用し、0.5% CMC および DW を投与した。コントロール群は ZF ラットを使用し、0.5% CMC および DW を投与した。ミチグリニド群は ZF ラットを使用し、ミチグリニド（1 mg/kg）および DW を投与した。ダパグリフロジン群は ZF ラットを使用し、0.5% CMC およびダパグリフロジン（0.1 mg/kg）を投与した。併用群は ZF ラットを使用し、ミチグリニド（1 mg/kg）およびダパグリフロジン（0.1 mg/kg）を投与した。

ダパグリフロジンによるインスリン抵抗性改善作用の発現には時間を要することから、ダパグリフロジンは反復投与により十分に効果が発現している状態で検討を行った。この状態下でミチグリニドを単回投与し、OGTT を行った。

試験方法の概略を Fig. 21 に示す。ダパグリフロジン群と併用群の動物にはダパグリフロジンを 22 日間経口投与した。OGTT はダパグリフロジン投与 15 日日日に経口投与した。パグリフロジン投与 15 日目にミチグリニドを経口投与した後、グルコース溶液を経口投与（1.0 g/kg）し、22 日日日日日は各薬物を経口投与した後、グルコース溶液を経口投与（1.0 g/kg）した。採血は 15 日日にグルコース負荷直前（Pre）、負荷後 0.25, 0.5, 1, 2, 3 および 5 時間目に尾静脈から行った（すべてのポイントにおいて 100 μL の採血を行った）。採尿は 22 日日にグルコース負荷後 6 時間目まで代謝ケージ内で行った。
3.3.2 STZ-NA ラットにおける OGTT 時のダパグリフロジンとミチグリニドの併用効果

3.3.2.1 STZ-NA ラットの作製

モデル作製については 2.3.1.1 に準じた。

3.3.2.2 STZ-NA ラットにおける経口グルコース負荷試験（OGTT, 1 g/kg）

動物は正常群を含めて以下に示す 5 つの試験群に群分けられた。正常群はクエン酸緩衝液のみ投与したラットを使用し、0.5% CMC および DW を投与した。コントロール群は STZ-NA ラットを使用し、0.5% CMC および DW を投与した。ミチグリニド群は STZ-NA ラットを使用し、ミチグリニド（1 mg/kg）および DW を投与した。ダパグリフロジン群は STZ-NA ラットを使用し、（0.5% CMC およびダパグリフロジン（0.1 mg/kg）を投与した。併用群は STZ-NA ラットを使用し、ミチグリニド（1 mg/kg）およびダパグリフロジン（0.1 mg/kg）を投与した。

OGTT は群分け OGTT の 4 日後に実施した。一晩絶食したラットに各薬物を経口投与した後、グルコース溶液を経口負荷（1.0 g/kg）した。採血はグルコース負荷直前（Pre）、負荷後 0.25, 0.5, 1, 2, 3 および 5 時間目に尾静脈から行った（すべてのポイントにおいて 100 μL の採血を行った）。

同条件で 9 週齢時に一晩絶食したラットを代謝ケージに個別に入れた。その中で OGTT を実施し、グルコース負荷後 6 時間目まで採尿した。
3.3.3 STZ-NA ラットにおける OGGT 時のカナグリフロジンとミチグリニドの併用効果

3.3.3.1 STZ-NA ラットの作製

モデル作製については 2.3.1.1 に準じた。

3.3.3.2 STZ-NA ラットにおける経口グルコース負荷試験 (OGTT, 1 g/kg)

動物は正常群を含めて以下の 5 つの試験群に群分けられた。正常群はクエン酸緩衝液のみ投与したラットを使用し、0.5% CMC および DW を投与した。コントロール群は STZ-NA ラットを使用し、0.5% CMC および DW を投与した。ミチグリニド群は STZ-NA ラットを使用し、ミチグリニド（1 mg/kg）および DW を投与した。カナグリフロジン群は STZ-NA ラットを使用し、0.5% CMC およびカナグリフロジン（3 mg/kg）を投与した。併用群は STZ-NA ラットを使用し、ミチグリニド（1 mg/kg）およびカナグリフロジン（3 mg/kg）を投与した。OGTT は 3.3.2.2 と同条件で実施され、代謝ケージ内でグルコース負荷後 8 時間目まで採尿した。

3.3.4 生化学パラメーターの測定

血漿中および尿中のグルコース濃度測定にはラボアッセイ™グルコース®（和光純薬工業株式会社、大阪）を、血漿インスリン濃度測定にはラットインスリン測定キット®（株式会社森永生化学研究所、神奈川）をそれぞれ用いた。尿中グルコース濃度および尿量から尿中排泄グルコース量を算出し体重にて補正した。

3.3.5 統計解析

ZF あるいは STZ-NA ラットの血漿グルコース濃度、血漿インスリン濃度、尿量および尿中グルコース排泄量について 1.2.2.4 の記載と同様にミチグリニドとダパグリフロジンまたはカナグリフロジンを要因とした二元配置分散分析を実施した。統計処理方法は 1.2.2.4 に準じた。正常群とコントロール群およびコントロール群と投薬群の比較は Student’s t 検定を用い、危険率は 5%未満を有意水準（両側検定）
3.4 結果

3.4.1 ZF ラットにおける OGTT 時のダパグリフロジンとミチグリニドの併用効果

OGTT では、コントロール群の血糖値はグルコース負荷 30 分目から 1 時間目で最大値に達し、2 時間目までに投与前値付近に回復した（Fig. 22A）。本試験で用いた ZF ラットは群間での空腹時の血糖値に差があったため、投与前値から 2 時間目までの血糖値の変化量を指標とした ΔAUC を用いて、薬物の血糖降下作用を評価した。コントロール群の ΔAUC_{0-2h} は、正常群のそれと比較して高値を示した（P<0.0001, Fig. 22A, t-test）。血糖低下作用への two-way ANOVA 解析で、ミチグリニドおよびダパグリフロジンの主作用には有意差があった（ミチグリニド: F(1, 44)=5.84, P= 0.0199, ダパグリフロジン: F(1, 44)= 14.25, P< 0.0001, Fig. 22B, two-way ANOVA）。一方、両薬物の併用による交互作用に統計的差異はなかった（ミチグリニド+ダパグリフロジン: F (1, 44) = 0.98, P= 0.3276, Fig. 22B, two-way ANOVA）。つまり、ミチグリニドおよびダパグリフロジンの併用は ZF ラットの血糖値を相加的に低下させることが示された。

ZF ラットの血漿インスリン値は、正常動物のそれよりも高いレベルであった。ZF ラットへの OGTT で、さらなる血漿インスリン値の増大が観察された（Fig. 23A）。ミチグリニドはインスリンの AUC_{0-1h} をコントロール群のそれよりも増加させ、その一方でダパグリフロジンはインスリンの AUC_{0-1h} を減少させた（ミチグリニド: F(1, 44)= 21.39, P< 0.0001, ダパグリフロジン: F(1, 44)= 20.72, P< 0.0001, Fig. 23B, two-way ANOVA）。Fig. 23B に示すように、両薬物の併用投与によるインスリン分泌量はコントロール群のそれと同程度となった（ミチグリニド+ダパグリフロジン: F (1, 44) = 0.11, P= 0.7417, Fig. 23B, two-way ANOVA）。
Fig. 22 Effects of mitiglinide, dapagliflozin, and their combination on plasma glucose levels in OGTT (1 g/kg).
(A) Temporal transition of plasma glucose levels during OGTT in ZF rats. (B) glucose AUC$_{0-2h}$ during OGTT in ZF rats. Data are means ±SEM of 12 animals. N: normal, C: control, M: mitiglinide, D: dapagliflozin.

Fig. 23 Effects of mitiglinide, dapagliflozin, and their combination on plasma insulin levels in OGTT (1 g/kg).
(A) Temporal transition of plasma insulin levels during OGTT in ZF rats. (B) insulin AUC$_{0-1h}$ during OGTT in ZF rats. Data are means ±SEM of 12 animals. N: normal, C: control, M: mitiglinide, D: dapagliflozin.

OGTT での、6 時間目までの尿量は各群間でいずれも同様の値となった（正常群 6.9±1.3 mL, コントロール群; 8.2±0.5 mL, ミチグリニド; 6.9±1.1 mL, ダパグ
リフロジン；9.1±0.6 mL 及び併用群；7.3±1.0 mL Fig. 24A). ZF ラットにおける 6 時間目までの尿糖排泄量を Fig. 24B に示す。尿糖排泄量は、ダバグリフロジン投与群で著しく増加した。ミチグリニドとダバグリフロジンの併用投与群でも尿糖排泄量は高いレベルにあったが、ダバグリフロジン投与群のそれの約 50% となった。尿糖排泄に対する two-way ANOVA 解析で、ミチグリニドとダバグリフロジンの主作用に有意差があった（ミチグリニド: F (1, 20) = 5.25, P= 0.0329, ダバグリフロジン: F (1, 20) = 50.61, P< 0.0001, Fig. 24B, two-way ANOVA）。さらに、ミチグリニドとダバグリフロジンの交互作用でも有意差があった（ミチグリニド+ダバグリフロジン: F(1, 20)= 5.23, P= 0.0332, Fig. 24B, two-way ANOVA）。これらの結果からミチグリニドはダバグリフロジンにより促進される尿糖排泄促進作用を減少させることが示された。

Fig.24 Effects of mitiglinide, dapagliflozin, and their combination on urinary volume and glucose secretion in OGTT (1 g/kg).

(A) Effects of mitiglinide, dapagliflozin, and their combination on urinary volume until 6 h in ZF rats. (B) Effects of mitiglinide, dapagliflozin, and their combination on glucose secretion until 6 h in ZF rats Data are means ±SEM of 6 animals. N: normal, C: control, M: mitiglinide, D: dapagliflozin.

3.4.2 STZ-NA ラットにおける OGTT 時のダバグリフロジンとミチグリニドの併用効果

OGTT 後のコントロール群の血糖値は 1 時間目で最大値に達し、2 時間目までに正常群のレベル付近まで低下した。コントロール群の血糖値の変動と比較して,
ミチグリニドおよびダパグリフロジン単独投与は OGTT 後の血糖値を抑制した。両薬物の併用投与による血糖値低下作用は単独投与でのそれよりも強力で、血糖値推移は正常群のそれとほぼ同様であった (Fig. 25A)。糖負荷後 2 時間目までの血糖 AUC0-2h 値を Fig. 24B に示す。コントロール群の AUC0-2h は正常群のそれよりも高値となった (P= 0.0006, Fig. 25B, t-test)。ミチグリニドとダパグリフロジンの併用効果について two-way ANOVA 解析を実施したところ、併用による交互作用に有意差は認められなかった (ミチグリニド+ダパグリフロジン: F(1, 20)= 3.73, P= 0.0678, Fig. 25B, two-way ANOVA)。その一方で、両薬物の血糖低下に対する主作用には有意差があった (ミチグリニド: F(1, 20)= 21.53, P= 0.0002, ダパグリフロジン : F(1, 20)= 24.47, P< 0.0001, Fig. 25B, two-way ANOVA)。これらの結果から、ミチグリニドとダパグリフロジンとの併用は血糖値を相加的に低下させることが示された。

![Fig.25](effects.jpg)

Fig.25 Effects of mitiglinide, dapagliflozin, and their combination on plasma glucose levels in OGTT (1 g/kg).

(A) Temporal transition of plasma glucose levels during OGTT in STZ-NA rats. (B) glucose AUC0-2h during OGTT in STZ-NA rats. Data are means ±SEM of 6 animals. ** P < 0.01 vs. normal. N: normal, C: control, M: mitiglinide, D: dapagliflozin.

血漿グルコース濃度とは対照的に、コントロール群の血漿インスリン濃度は正常群のそれよりも低下していた。ミチグリニド投与は、インスリン分泌の経時変化を正常群のそれに近づけたが、ダパグリフロジンは、インスリン分泌に影響し
なかった（Fig. 26A）。さらに、両薬物の併用によるインスリン分泌は、ミチグリニド単独投与のインスリン分泌の経時変化と同程度となった。

Fig.26 Effects of mitiglinide, dapagliflozin, and their combination on plasma insulin levels in OGTT (1 g/kg).
(A) Temporal transition of plasma insulin levels during OGTT in STZ-NA rats. (B) Insulin AUC0–1h during OGTT in STZ-NA rats. Data are means ±SEM of 12 animals. N: normal, C: control, M: mitiglinide, D: dapagliflozin.

尿糖については、各個体で排尿までの時間にばらつきが生じたため負荷後 6 時間目まで採尿した値を比較した（Fig. 27A, 27B）。OGTT 下、6 時間までの尿量には群間での差異はなかった（正常群 5.1±0.7 mL, コントロール群；6.1±0.5 mL, ミチグリニド；5.9±0.6 mL, ダパグリフロジン；7.2±0.6 mL 及び併用群；4.6±0.3 mL, Fig. 27A）。ダパグリフロジン投与群の尿糖排泄量は増加した。一方、併用群の尿糖排泄量は、ダパグリフロジン投与群のそれの約 50%抑制となった。尿糖排泄量への two-way ANOVA 解析で、ミチグリニドとダパグリフロジンの主作用には有意差があった（ミチグリニド：F(1, 20)=7.81, P=0.0112, ダパグリフロジン：F(1, 20)=54.44, P<0.0001, Fig. 27B, two-way ANOVA）。さらに、ミチグリニドとダパグリフロジンの交互作用でも有意差があった（ミチグリニド+ダパグリフロジン：F(1, 20)=7.87, P=0.0109, Fig. 27B, two-way ANOVA）。これらの解析結果より、ミチグリニドは、ダパグリフロジンにより促進される尿糖排泄促進作用を減少させることが示された。
Fig. 27 Effects of mitiglinide, dapagliflozin, and their combination on urinary volume and glucose secretion in OGTT (1 g/kg).

3.4.3 STZ ラットにおける OGTT 時のカナグリフロジンとミチグリニドの併用効果

ミチグリニドあるいはカナグリフロジンの単独投与により、OGTT 後のコントロール群での血糖値上昇を減弱した（Fig. 28A）。両薬物の併用投与による OGTT 後血糖値上昇を低下させる作用は単独投与でのそれよりも強力となり、正常群の血糖推移よりも低いものとなった（Fig. 28A）。糖負荷後 2 時間目までの血糖 AUC_{0-2h} をFig. 28B に示す。ミチグリニドおよびカナグリフロジンの血糖値低下に対する主作用には有意差があった（ミチグリニド：F(1, 20)= 15.97, P= 0.0007, カナグリフロジン：F(1, 20) = 12.47, P= 0.0021, Fig. 28B, two-way ANOVA）。その一方で、両薬物の交互作用に有意差はなかった。これらの解析から、ミチグリニドとカナグリフロジンとの併用は血糖値を相加的に低下させることが示された（ミチグリニド+カナグリフロジン：F(1, 20)= 3.67, P= 0.0697, Fig. 28B, two-way ANOVA）。
Fig. 28 Effects of mitiglinide, canagliflozin, and their combination on plasma glucose levels in OGTT (1 g/kg).
(A) Temporal transition of plasma glucose levels during OGTT in STZ-NA rats. (B) Glucose AUC_0–2h during OGTT in STZ-NA rats. Data are means ±SEM of 6 animals. N: normal, C: control, M: mitiglinide, Ca: canagliflozin.

ミチグリニド投与はインスリン分泌の経時変化を正常群のそれに近似させた。それ一方で、カナグリフロジン投与はインスリン分泌能を低下させた（ミチグリニド: F(1, 19)= 10.98, P= 0.0036, カナグリフロジン: F(1, 19)= 9.14, P= 0.007, Fig. 29A, 29B, two-way ANOVA）。さらに、両薬物の併用によるインスリン分泌能もミチグリニド単独投与のそれよりも減弱し、コントロール群のそれと同様のものとなった（ミチグリニド+カナグリフロジン: F(1, 19)= 0.96, P= 0.3404, Fig. 29A, 29B, two-way ANOVA）。これはミチグリニドのインスリン分泌促進作用とカナグリフロジンのインスリン分泌量の減少効果が反映された結果と考えられた。
Fig. 29 Effects of mitiglinide, canagliflozin, and their combination on plasma insulin levels in OGTT (1 g/kg).

(A) Temporal transition of plasma insulin levels during OGTT in STZ-NA rats. (B) Insulin AUC_{0–1h} during OGTT in STZ-NA rats. Data are means ±SEM of 12 animals. N: normal, C: control, M: mitiglinide, Ca: canagliflozin.

OGTT 後 8 時間目までの尿量は、カナグリフロジン単独投与群でのみ増加した（ミチグリニド：F(1, 20)= 4.1, P= 0.0565, カナグリフロジン：F(1, 20)= 9.52, P= 0.0058, Fig. 30A, two-way ANOVA）。尿糖排泄量でもカナグリフロジン投与群で尿糖排泄量の増加が観察された（ミチグリニド：F(1, 20)= 121.52, P= 0.0021, カナグリフロジン：F(1, 20)= 199.21, P< 0.0001, Fig. 30B, two-way ANOVA）。併用群の尿糖排泄量はカナグリフロジン投与群のそれの約 50%となった。尿量と尿糖排泄量についてではミチグリニドとカナグリフロジンの併用による交互作用に有意差があった（尿量 ミチグリニド+カナグリフロジン：F(1, 20)= 13.18, P= 0.0017, Fig. 30A, 尿糖排泄量 ミチグリニド+カナグリフロジン：F(1, 20)= 12.53, P= 0.0021, Fig. 30B, two-way ANOVA）。これらの結果から、ミチグリニドはカナグリフロジンにより促進される過剰な尿糖排泄を減少させることが示された。
Fig. 30 Effects of mitiglinide, canagliflozin, and their combination on urinary volume and glucose secretion in OGTT (1 g/kg).

(A) Effects of mitiglinide, canagliflozin, and their combination on urinary volume until 6 h in STZ-NA rats. (B) Effects of mitiglinide, canagliflozin, and their combination on glucose secretion until 6 h in STZ-NA rats Data are means ±SEM of 6 animals. N: normal, C: control, M: mitiglinide, Ca: canagliflozin.

3.5 考察

本実験で、ミチグリニド、ダパグリフロジンおよびカナグリフロジンはそれぞれ単独投与で動物モデルへのグルコース負荷後の血糖値の増大を抑制した。それぞれの単独投与で動物モデルの、OGTT 下、2 時間目から 5 時間目まで、血漿グルコース濃度を投与前値まで低下させた。同時にこれら薬物処置では、SU 薬などにみられる低血糖状態を示さなかった[28, 29, 69]。ミチグリニドとダパグリフロジンまたはカナグリフロジンを併用投与した場合、単独投与よりも血糖降下作用のさらなる増強が認められ、同時に低血糖は示さなかった。ミチグリニドを 2 型糖尿病患者に投与すると、空腹時血糖値とともに HbA1c 値も低下することが報告されている[71]。これは、食後の急激な血糖値の上昇を制御することが糖尿病状態の改善につながることを示している。本実験結果は糖尿病患者の血糖値の制御の観点からミチグリニドと SGLT2 阻害薬の併用が有益であることを示唆している。ミチグリニドは単独投与と同様に SGLT2 阻害薬との併用でも低血糖リスクの危険性は少ないと考えられた。
ミチグリニドの作用機序は、膵ランゲルハンス島β細胞からのインスリン分泌促進によるものであるが、その様式は速効性かつ短時間作用型を特徴としているところがSU薬とは異なるところである[28-30]。一方、SGLT2 阻害薬のダバグリフロジンはインスリン非依存性の血糖降下作用を示す薬物である。ダバグリフロジンは近位尿細管のSGLT2 トランスポーターを介して糖の再吸収を抑制し、過剰な糖を尿中に排泄する[66]。ミチグリニドはインスリン分泌不全を示す2型糖尿病ラットで、インスリン分泌促進により血糖値の低下作用を示した。ダバグリフロジンはインスリン分泌に影響を与えることなく血糖降下作用を示した。これら両薬物の併用はミチグリニド単独投与時と同等のインスリン分泌で、より強力な血糖値の降下作用を示した。一方、両薬物のインスリン分泌に対する作用はインスリン抵抗性モデルのZFラットでより明確に観察された。ZFラットは空腹状態ですでに血漿インスリンレベルが高い状態にある。ZFラットはOGTT下でもインスリン分泌機能を保持しており、ミチグリニドはZFラットのインスリン分泌を促進させることで血糖値の降下作用を示すことが明らかとなった。ダバグリフロジンは血糖値を降下させる作用を示す投与量では、コントロール群よりも血漿へのインスリン分泌機能が低くなっていた。つまり、両薬物のインスリン分泌への作用の差異が明確にされた。このような両薬物を併用すると、ミチグリニド単独投与によるインスリン分泌量が少量になっても、より強い血糖値の降下作用が惹起され、これら薬物の併用によるインスリン節約効果が明らかにされた。

SGLT2 阻害薬の中でもカナグリフロジンはSGLT2に加え、弱いSGLT1阻害作用も併せ持つ[68]。腎尿細管のSGLT1は高血糖状態では、SGLT2で再吸収されない尿中グルコースの再吸収の役割を担っている。そのため、カナグリフロジンの尿糖排泄およびそれに伴う血糖値の降下作用は他のSGLT2阻害薬のそれらよりも強力と推測される[67]。STZ-NAラットで、ミチグリニドはカナグリフロジンとの併用により、ミチグリニド単独投与よりも少ないインスリン分泌で、強力な血糖値の降下作用を示した。血糖値の降下作用についてはダバグリフロジンで得られた結果と同様であり、ミチグリニドによる食後早期のインスリン分泌促進作用とカナグリフロジンによるSGLT2阻害による尿糖排泄促進作用の組合せの結果と考えられる。血漿インスリン濃度に及ぼすこれら薬物の効果について、カナグリフ
ロジン投与群の血漿インスリン濃度がでコントロール群のそれよりも低値となっ
た。両薬物の併用群のそれも低値となる結果であった。これは、ZF ラットでのダ
パグリフロジンの結果に近似するものであった。ダパグリフロジンの ZF ラットで
の検討とは異なり、本実験はカナグリフロジンの単回投与での検討のため、イン
スリン抵抗性の改善による可能性は低い。カナグリフロジン単回投与での血漿イ
ンスリン濃度上昇の抑制は、経口投与されたカナグリフロジンが、小腸で SGLT1
を阻害したことにより、食後早期のグルコース吸収を抑制したことによると考え
られた。つまり、ボグリボースで誘導されたたインスリン分泌の節約効果が発揮
された可能性がある[69]。第 1 および 2 章の結果と同様にミチグリニドと両 SGLT2
阻害薬との併用によるインスリン分泌の節約効果は膝ラングルハンス島 β 細胞へ
の負荷をより軽減する可能性が示された。長期投与で、2 次無効発現は減少すると
考えられる。

今回、カナグリフロジンの尿量および尿糖排泄量の増加はダパグリフロジンの
それよりも強力であった。これは SGLT2 阻害の選択性が高いダパグリフロジンと
比べ、カナグリフロジンは SGLT2 阻害作用に加えて SGLT1 阻害作用が腎臓で発揮
されたことに起因すると考えられた[67, 68]。本実験で用いた 2 つの動物モデルで、
ダパグリフロジンあるいはカナグリフロジン投与が過剰な尿糖排泄を生じさせた。
これら薬物により尿中に排泄された大量の糖は生殖器感染症や尿路感染症などの
副作用を発生させる危険性がある[10, 72]。さらに、過剰な糖の尿への排泄は浸透
圧性の利尿による脱水および、低炭水化物ダイエットと同様な状態となることに
よる筋肉量の減少が高齢者で懸念される [72, 73, 74]。ダパグリフロジンあるいは
カナグリフロジンへのミチグリニドの併用は、これら SGLT2 阻害薬の単独投与よ
りも尿量を減少させるだけではなく、尿糖排泄量も減少させた。これはミチグリ
ニドが OGTT 後の血糖値の上昇を抑制し、かつその推移を良好な状態に維持した
ためと考えられた。すなわち、ミチグリニドは、上述した SGLT2 阻害薬で懸念さ
れる副作用を軽減する可能性を提示した。

3.6 章括
本章では ZF ラットおよび STZ-NA ラットを用い、ミチグリニドをダパグリフルログションまたはカナグリフルログションと併用した際の血糖値、血漿インスリン値および尿糖排泄量に及ぼす効果について検討した。

(1) ミチグリニド、ダパグリフルログションおよびカナグリフルログションは単独投与で糖尿病モデル動物でのグルコース負荷後の血糖値を抑制した。

(2) ダパグリフルログションおよびカナグリフルログションは単独投与で糖尿病モデル動物のインスリン分泌を減少させ、尿へのグルコース排泄を促進した。

(3) 糖尿病モデル動物へのダパグリフルログションあるいはカナグリフルログションとミチグリニドの併用により、それぞれの単独投与よりも、相加的な血糖値降下作用を示した。

(4) 糖尿病モデル動物へのダパグリフルログションあるいはカナグリフルログションとミチグリニドの併用により、ミチグリニド単独投与よりもインスリン分泌が節約された。

(5) 糖尿病モデル動物へのダパグリフルログションあるいはカナグリフルログションとミチグリニドの併用は、SGLT2 阻害薬による尿糖排泄量を減少させた。

これらのことから、SGLT2 阻害薬とミチグリニドの組合せでもそれぞれの単独投与よりも強力な血糖降下作用を示することが確認された。これは血糖降下作用の増強に加え、両薬の作用を補完する組合せの一つと考えられる。つまり、尿路感染あるいは体液減少などの有害事象への懸念から SGLT2 阻害薬を使用していない患者および肥満を伴い、夜間および空腹時の血糖値が高い患者に有益な効果をもたらすと期待される。
4. 第4章 DPP-IV阻害薬（シタグリプチン）との併用効果

4.1 序論

我が国では、糖尿病の主因がインスリン分泌能の低下に起因していると考えられている。そこで、DPP-IVを阻害することで、生体内の活性型GLP-1を保持し、インスリン分泌促進とグルカゴン分泌抑制作用を有する薬物DPP-IV阻害薬の使用頻度が上昇している[76]（Fig. 31）。しかしながら、食前および食後の両者で高血糖状態にある2型糖尿病患者では、DPP-IV阻害薬単独投与によるインスリン分泌促進だけではインスリン不足を解消することはできない。そのため、インスリン分泌促進薬のSU薬あるいはインスリン抵抗性改善薬のピグアナイド薬との併用が必要となる。その一方で、DPP-IV阻害薬とSU薬との併用は重篤な低血糖を誘発し易いので、併用時には低血糖回避の目的でSU薬の投与量を減量することが推奨されている[77-80]。インスリン分泌促進薬の投与量を少なくすることは、低血糖の回避を可能とするものの、血糖値の降下作用を減弱させ、十分な血糖値の制御が難しくなる。したがって、2型糖尿病患者の薬物治療で、DPP-IV阻害薬との併用では十分な血糖値の制御と低血糖の回避を同時に達成できる治療薬の使用が望まれている。

ミチグリニドによるインスリン分泌促進はSU薬と同じ作用機序である。しかしながら、SU薬はインスリン分泌を長時間持続させるのに対し、ミチグリニドは速効性かつ短時間型のインスリン分泌促進を特徴とする。そのため、ミチグリニドは単独投与での使用だけでなくDPP-IV阻害薬との併用でも低血糖を誘発する危険性が小さいと期待される。

ミチグリニド、DPP-IV阻害薬およびSU薬は、いずれもインスリン分泌を促進させる。そこで、本章では、ミチグリニドとSU薬グリベンクラミドの単独あるいはDPP-IV阻害薬シタグリプチンとの併用がDPP-IV活性に及ぼす効果をin vitroおよびin vivo実験系を用いて検討した。第2章および3章と同様に、STZ-NAラットを用い、シタグリプチンとの併用効果について解析した。なお、比較検討のため、シタグリプチンとグリベンクラミドとの併用効果についても同様に解析した。
4.2 実験材料

4.2.1 実験動物および選択理由

STZ-NA ラットの選択理由については 2.2.1 に準じた。

SD 系 雄性ラットは SLC 社から購入した。Wistar 系雄性ラットは日本チャールスリバー株式会社（神奈川）から購入した。8 週齢の実験動物の倫理を含めた飼育および実験については動物は 1.2.1.1 に準じた。

4.2.2 使用薬物

ミチグリニド（キッセイ薬品工業）およびグリベンクラミド（和光純薬工業）は 0.5%カルボキシメチルセルロースナトリウム（0.5%CMC）溶液に懸濁し、シタグリプチン（Sequoia Research Products 社, UK）は 0.25%メチルセルロース（0.25%MC）溶液に溶解して、実験動物に経口投与した。In vitro 実験系では、ミチグリニド、グリベンクラミドおよびシタグリプチンを dimethyl sulfoxide（DMSO, Sigma-Aldrich Co. St. Louis, MO, USA）に溶解し、さらに 80 mM MgCl₂ 含有の緩衝液（25 mM HEPES, 140 mM NaCl, 1% BSA, pH 7.8）で希釈して試験に用いた。

ストレストゾシンと 7-amino-4-methylcoumarine（AMC）は、Sigma-Aldrich Co.（St. Louis, MO, USA）から購入した。H-glycyl-prolyl-7-amino-4-methylcoumarine（H-Gly-Pro-AMC）は、Bachem（Bubendorf, Switzerland）から購入した。ニコチンアミドおよびその他の試薬は和光純薬工業株式会社（大阪）から購入した。
4.3 試験方法

4.3.1 DPP-IV 活性に対する阻害作用

4.3.1.1 ラット血漿を用いた DPP-IV 活性への阻害作用

DPP-IV 活性の測定は、Fukushima らの方法[81]を一部変更して行われた。ラット血漿に酵素を添加した 80 mM MgCl₂ 含有の緩衝液（25 mM HEPES, 140 mM NaCl, 1% BSA, pH 7.8）を混和し、室温でプレインキュベーションした後、0.05 mM の基質（H-Gly-Pro-7-amino-4-methylcoumarin (AMC) を緩衝液で調製）を加えた。室温、遮光下で 25 分間インキュベーションし、25% 酢酸溶液を加えて反応を停止させた。蛍光強度（励起波長 380 nm, 蛍光波長 460 nm）をマイクロプレートリーダー (SPECTRA MAX GEMINI® Molecular Devices, Sunnyvale, CA) を用いて測定した。定量化のための標準曲線は、AMC を用いて作成した。

4.3.1.2 STZ-NA ラットにおけるシタグリプチンとの併用時におけるグリベンクラミド、ミチグリニドの DPP-IV 活性の比較

STZ-NA ラットを用い、以下の併用試験を実施した。

4.3.1.2.1 STZ-NA ラットの作製

モデル作製については 2.3.1.1 に準じた。

4.3.1.2.2 STZ-NA ラットへのミチグリニドおよびシタグリプチン単独投与あるいは併用での DPP-IV 活性に及ぼす効果

作製された STZ-NA ラットを 4 つの試験群に群分けした。コントロール群は 0.5% CMC および 0.25%MC を投与した。ミチグリニド群はミチグリニド（1 mg/kg）および 0.25%MC を投与した。シタグリプチン群は 0.5% CMC およびシタグリプチン（10 mg/kg）を投与した。併用群はミチグリニド（1 mg/kg）およびシタグリプチン（10 mg/kg）を投与した。絶食させた 9 週齢の STZ-NA ラットに各薬物の経口投与を行い、無麻醉下で、投与直前、投与後 0.25, 0.5, 1, 2, 3, 4, 6, 8, 12 および 24 時間目 の各時点で尾静脈から採血した（すべてのポイントで採血量は 100 μL とし
た。血液を EDTA を加えたチューブに採取し、遠心分離（1,880 ×g, 4°C, 10 分間）し、血漿を得た。血漿 DPP-IV 活性の測定は 4.3.1.1 に準じた。

4.3.1.2.3 STZ-NA ラットへのグリベンクラミドおよびシタグリプチン単独投与あるいは併用での DPP-IV 活性に及ぼす効果

作製された STZ-NA ラットを 4 つの試験群に群分けた。コントロール群は 0.5% CMC および 0.25%MC を投与した。グリベンクラミド群はグリベンクラミド (1 mg/kg) および 0.25%MC を投与した。シタグリプチン群は 0.5% CMC およびシタグリプチン (10 mg/kg) を投与した。併用群はグリベンクラミド (1 mg/kg) およびシタグリプチン (10 mg/kg) を投与した。採血方法および血漿 DPP-IV 活性の測定は 4.3.1.2.2 に準じた。

4.3.2 STZ-NA ラットにおける OGTT 時のシタグリプチンとの併用時におけるミチグリニドと SU 薬（グリベンクラミド）の効果の比較

4.3.2.1 STZ-NA ラットの作製

モデル作製については 2.3.1.1 に準じた。

4.3.2.2 STZ-NA ラットにおける OGTT 時のミチグリニドとシタグリプチンの併用効果

動物は正常群を含めて以下に示す 5 つの試験群に群分けされた。正常群はクエン酸緩衝液のみ投与したラットを使用し、0.5% CMC および DW を投与した。コントロール群は STZ-NA ラットを使用し、0.5% CMC および DW を投与した。ミチグリニド群は STZ-NA ラットを使用し、ミチグリニド (1 mg/kg) および DW を投与した。シタグリプチン群は STZ-NA ラットを使用し、0.5% CMC およびシタグリプチン (10 mg/kg) を投与した。併用群は STZ-NA ラットを使用し、ミチグリニド (1 mg/kg) およびシタグリプチン (10 mg/kg) を投与した。

OGTT は群分け OGTT の 4 日後に実施した。一晩絶食したラットに各薬物あるいは DW を経口投与後、グルコース溶液を経口負荷 (1.0 g/kg) した。採血はグルコース負荷直前 (Pre), 負荷後 0.25, 0.5, 1, 2, 3 および 5 時間目の時点で尾
4.3.2.3 STZ-NA ラットにおける OGTT 時のグリベンクラミドとシタグリプチンの併用効果

動物は正常群を含めて以下に示す 5 つの試験群に群分けされた。正常群はクエン酸緩衝液のみ投与したラットを使用し、0.5% CMC および DW を投与した。コントロール群は STZ-NA ラットを使用し、0.5% CMC および DW を投与した。グリベンクラミド群は STZ-NA ラットを使用し、グリベンクラミド (1 mg/kg) および DW を投与した。シタグリプチン群は STZ-NA ラットを使用し、0.5% CMC およびシタグリプチン (10 mg/kg) を投与した。併用群は STZ-NA ラットを使用し、グリベンクラミド (1 mg/kg) およびシタグリプチン (10 mg/kg) を投与した。グリベンクラミドおよびシタグリプチンの投与量は過去の検討を基に決定した [28, 82]。OGTT および採血は 4.3.2.2 に準じた。

4.3.3 血液検体の生化学パラメータの測定

血漿グルコース濃度の測定には、ラボアッセイ™グルコース®（和光純薬工業株式会社, 大阪）を、血漿インスリン濃度の測定にはラットインスリン測定キット®（株式会社森永生科学研究所, 神奈川）をそれぞれ用いた。

4.3.4 統計解析

STZ-NA ラットの血漿グルコース濃度、血漿インスリン濃度について 1.2.2.4 の記載と同様にミチグリニドまたはグリベンクラミドとシタグリプチンを要因とした二元配置分散分析を実施した。統計処理方法は 1.2.2.4 に準じた。コントロール群と投薬群との比較は Tukey's test を実施した。統計解析には, SAS system version 9.3（SAS Institute Inc., North Carolina, USA）を使用した。危険率は 5%未満を有意水準（両側検定）として採用した。
4.4 結果

4.4.1 DPP-IV 活性に対する阻害作用（in vitro, in vivo）

正常ラットの血漿中 DPP-IV 活性に及ぼすミチグリニド、グリベンクラミドおよびシタグリプチンの効果を Fig. 32 に示す。シタグリプチンは濃度依存的に DPP-IV 活性を阻害し、その IC₅₀ 値は 1.6 × 10⁻⁷ mol/L であった。一方、ミチグリニドおよびグリベンクラミドは、いずれも 1 × 10⁻⁴ mol/L までの濃度では DPP-IV 活性に影響しなかった（Fig. 32）。

![Fig.32 Effect of mitiglinide, glibenclamide, and sitagliptin on plasma DPP-IV activity in normal rats in vitro.](image)

Data represents the mean value ± standard error of the mean (SEM) of measurements in 8 cases.

STZ-NA ラットの血漿 DPP-IV 活性に対するミチグリニド、グリベンクラミドおよびシタグリプチンの単独作用、ならびにミチグリニドあるいはグリベンクラミドとシタグリプチンとの併用作用を Fig. 33 に示した。シタグリプチンは、STZ-NA ラットの血漿 DPP-IV 活性を投与 8 時間目まで約 80～90% 阻害し、投与 24 時間後でも約 50% の阻害を示した（Fig. 33A, 33B）。一方、ミチグリニドおよびグリベンクラミドはいずれも血漿 DPP-IV 活性への阻害作用を示さず、シタグリプチンとの併用でもシタグリプチンの DPP-IV 活性阻害作用に影響しなかった（Fig. 33A, 33B）。
Fig. 33 Effects of mitiglinide (A), glibenclamide (B), sitagliptin, and their combinations on plasma DPP-IV activity in STZ-NA rats ex vivo.

Data point represents the mean value ± SEM of measurements in 5 animals. M+S: mitiglinide + sitagliptin, M+G: glibenclamide + sitagliptin.

4.4.2 STZ-NA ラットにおける OGTT 時のシタグリプチンとの併用時におけるミチグリニドと SU 薬（グリベンクラミド）の効果の比較

STZ-NA ラットに OGTT を実施した。糖負荷後の血糖値の推移へのミチグリニド、シタグリプチンおよび両薬物の併用作用を Fig. 34A に示した。ミチグリニドはグルコース投与前および2時間目の血糖上昇を、シタグリプチンはグルコース投与後1時間目の血糖上昇をコントロール群のそれよりも軽減した（ミチグリニド：1h P< 0.0001, 2h P= 0.001, Fig. 34A, シタグリプチン：1h P=0.0052, Fig. 34A, Tukey test）。グルコース投与後3時間目以降でミチグリニド群およびシタグリプチン群の血糖値はいずれもコントロール群のそれと同様の値となった（ミチグリニド：3h P= 0.232, 5h P= 0.4796, Fig. 22A, シタグリプチン：3h P=0.9833, 5h P= 0.9903, Fig. 34A, Tukey test）。ミチグリニドおよびシタグリプチンの併用投与群の血糖値はそれぞれの単独投与群のそれよりも低値で推移した。特にグルコース投与後1時間目の血糖値は、単独投与群のそれよりも上昇度合いが抑制された（P=0.0034 vs ミチグリニド, P<0.0001 vs シタグリプチン, Fig. 34A, Tukey test）。ミチグリニド投与による、グルコース負荷後の血糖上昇の度合いが抑制されるのは
グルコース投与2時間目までなので、その血糖AUC_{0-2h}をFig. 34Bに示す。ミチグリニドおよびシタグリプチンの血糖AUC_{0-2h}は、コントロール群のそれよりも低値であったが（ミチグリニド：F(1, 59)= 43.09, P< 0.0001, シタグリプチン：F(1, 59)=20.93, P< 0.0001, Fig. 34B, two-way ANOVA）、血糖AUC_{0-2h}に対する両薬物の交互作用に有意差は無かった（ミチグリニド+シタグリプチン：F(1, 59)=0.06, P=0.8073, Fig. 34B, Two-way ANOVA）。

Fig.34 Effects of mitiglinide, sitagliptin, and their combination on plasma glucose levels in OGTT (1 g/kg).
(A) Temporal transition of plasma glucose levels during OGTT in STZ-NA rats. (B) Glucose AUC_{0-2h} during OGTT in STZ-NA rats. Data are means ±SEM of 10-16 animals.

*** p <0.001* p <0.05 vs control. (Mitiglinide, 1 h: p < 0.0001, 2 h: p =0.0004; Sitagliptin, 1 h p = 0.0052; Mitiglinide + Sitagliptin, 15 min: p =0.0488, 0.5h: p <0.0001 , 1h: p <0.0001, 2h: p <0.0001).## p <0.01 vs Mitiglinide. ††† p <0.001 vs Sitagliptin. (Mitiglinide + Sitagliptin, 1h: p = 0.0034 vs. mitiglinide; 1h: p < 0.0001 vs. sitagliptin). N: normal, C: control, M: mitiglinide, S: sitagliptin.

STZ-NAラットのOGTT後の血糖値の推移に対するグリベンクラミド、シタグリプチンおよび両薬物の併用作用をFig. 35Aに示す。グリベンクラミドはミチグリニドとは異なり、グルコース投与後1時間目まではコントロール群のそれと同様の血糖値の推移を示したが、グルコース投与後2時間目以降では血糖値が低値となった（グリベンクラミド：2h, 3h, 5h P<0.0001, Fig. 35A, Tukey test）。シタグリプチン群ではグルコース投与後0.5および1時間目まではコントロール群で観察さ
血糖値の上昇度合いが軽減されたが、2時間目以降では血糖値の降下作用は観察されなかった（シタグリプチン：0.5h \(P=0.0172 \), 1h \(P<0.0001 \), Fig. 35A, Tukey test）。グリベンクラミドとシタグリプチンの併用投与群の血糖値の推移は、グルコース投与後2時間目まではシタグリプチン単独と、5時間目まではグリベンクラミド単独のそれと同様の推移を示した（Fig. 35A）。グリベンクラミド投与により血糖値が降下したグルコース投与後2から5時間目までの血糖AUC2-5hをFig. 35Bに示す。グリベンクラミド群の血糖AUC2-5hは、コントロール群のそれに対して低値となったが、シタグリプチン群の血糖AUC2-5hはコントロール群のそれと同程度であった。両薬物の併用による血糖AUC2-5hはグリベンクラミド群のそれとほぼ同程度であり（グリベンクラミド：\(F(1, 56) = 104.61, P<0.0001 \), シタグリプチン：\(F(1, 56) = 0, P=1 \)Fig. 35B, two-way ANOVA）、交互作用に有意差は認められなかった（グリベンクラミド+シタグリプチン：\(F(1, 56)=0.09, P=0.7653 \) Fig. 35B, two-way ANOVA）。

Fig.35 Effects of glibenclamide, sitagliptin, and their combination on plasma glucose levels in OGTT (1 g/kg).
(A) Temporal transition of plasma glucose levels during OGTT in STZ-NA rats. (B) Glucose AUC0-2h during OGTT in STZ-NA rats.. Data are means ±SEM of 10-16 animals.
*** \(p<0.001 \) * \(p<0.05 \) vs control. (glibenclamide, 2 h, 3 h, 5 h, \(p<0.0001 \); sitagliptin, 0.5 h, \(p=0.0172 \); 1 h, \(p<0.0001 \); glibenclamide + sitagliptin, 1h 2 h, 3 h, 5 h, \(P<0.0001 \)). N: normal, C: control, G: glibenclamide, S: sitagliptin.
STZ-NA ラットの OGTT 後の血漿インスリン濃度に及ぼすミチグリニド、シタグリプチンおよび両薬物の併用効果を Fig. 36A に示す。ミチグリニド群の血漿インスリン濃度はグルコース投与後 0.25 時間目で、コントロール群のそれよりも高値となり、インスリン分泌量の増大を示した（ミチグリニド：0.25h $P=0.009$、Fig. 36A, Tukey test）。ミチグリニドとシタグリプチンの併用群の血漿インスリン濃度は、それぞれの単独投与群のそれよりも高値で推移し、グルコース投与後 0.25 および 0.5 時間目でインスリン分泌の増大が認められた（ミチグリニド+シタグリプチン：0.25h $P=0.0014$、0.5h $P=0.0001$、Fig. 36A, Tukey test）。ミチグリニド投与後に、血漿インスリン濃度の上昇作用がみられたグルコース投与後 1 時間目までのインスリン AUC₀⁻¹h を Fig. 36B に示す。ミチグリニドおよびシタグリプチンのインスリン AUC₀⁻¹h は、コントロール群のそれよりも高値となったが（ミチグリニド：F(1, 59)=14.56、$P=0.0003$、シタグリプチン：F(1, 59)=6.71、$P=0.0121$、Fig. 36B, two-way ANOVA）、インスリン AUC₀⁻¹h に対する両薬物の交互作用に有意差は無かった（ミチグリニド+シタグリプチン：F(1, 59)=0.66、$P=0.4198$、Fig. 36B, Two-way ANOVA）。

Fig.36 Effects of mitiglinide, sitagliptin, and their combination on plasma insulin levels in OGTT (1 g/kg).

(A) Temporal transition of plasma insulin levels during OGTT in STZ-NA rats. (B) Insulin AUC₀⁻¹h during OGTT in STZ-NA rats. Data are means ±SEM of 10-16 animals. *** $p <0.001$ ** $p <0.01$ * $p <0.05$ vs control. (Mitiglinide, 15 min, $p = 0.009$; Mitiglinide + Sitagliptin, 15 min: $p =0.0014$, 0.5h: $p =0.0001$，2h: $p <0.0001$). N: normal, C: control, M:
mitiglinide, S: sitagliptin.

Fig. 37 Effects of glibenclamide, sitagliptin, and their combination on plasma insulin levels in OGTT (1 g/kg).
(A) Temporal transition of plasma insulin levels during OGTT in STZ-NA rats. (B) Insulin AUC_{1-5h} during OGTT in STZ-NA rats. Data are means ±SEM of 10-16 animals. ** p < 0.01 * p < 0.05 vs control. (Sitagliptin, 15 min, p = 0.0071; Glibenclamide, 3 h, p = 0.0033; Glibenclamide + Sitagliptin, 15 min, p = 0.0023, 0.5h, p = 0.0171). N: normal, C: control, G: glibenclamide, S: sitagliptin.

STZ-NA ラットの OGTT 後の血漿インスリン濃度へのグリベンクラミド、シタグリプチンおよび両薬物の併用効果を Fig.37A に示す。シタグリプチン群の血漿インスリン濃度は、グルコース投与後 0.25 時間後で、コントロール群のそれよりも上昇した（シタグリプチン：0.25h P= 0.0071, Fig. 37A, Tukey test）。グリベンクラミド群の血漿インスリン濃度は、ミチグリニド群のそれとは異なり、投与後 1 時間目ではコントロール群のそれと同様のインスリン濃度推移を示したが、グルコース投与後 3 時間目ではコントロール群のそれよりも高値となった（グリベンクラミド：3h P=0.0033, Fig. 37A, Tukey test）。グリベンクラミドとシタグリプチンの併用群の血漿インスリン濃度は、グルコース投与後 2 時間目まではシタグリプチン群のそれと、グルコース投与後 3〜5 時間目まではグリベンクラミド群のそれと同様のレベルとなり、両薬物の併用による血漿インスリン濃度への上乗せ効果は
観察されなかった（Fig. 37A）。グリペンクラミド群で、血漿インスリン濃度上昇がみられたグルコース投与後1～5時間目までのインスリンAUC1-shをFig. 37Bに示した。グリペンクラミド群のインスリンAUC1-shはコントロール群のそれよりも高値となった（グリペンクラミド：F(1, 56)=9.98, P=0.0026, シタグリプチン：F(1, 56)=1.61, P=0.2097, Fig. 37B, two-way ANOVA）。シタグリプチン群のインスリンAUC1-shは、コントロール群のそれと同様の値となり、両薬物の交互作用に有意差は無かった（グリペンクラミド+シタグリプチン：F(1, 56)=1.22, P=0.2741 Fig. 37B, two-way ANOVA）。

4.5 考察

糖尿病治療薬DPP-IV 阻害薬はDPP-IVによるGLP-1不活化を抑制し、GLP-1の効果を持続させる。腸管内分泌細胞のK細胞とL細胞から分泌されるGIPとGLP-1は、ともにインスリン分泌促進反応を示す。2型糖尿病患者ではGIPによるインスリン分泌促進反応が消失しており、摂食後に促進されるインスリン分泌にはGLP-1がより重要な役割を担うと考えられている[83]。さらに、GLP-1は血糖値に依存してインスリン分泌を促進させることから、DPP-IV阻害薬は低血糖リスクの少ない薬物とされる。DPP-IV阻害薬は臨床において食後血糖値の急激な上昇を抑制してHbA1cレベルを低下させることから、我が国での2型糖尿病患者の薬物治療の第一選択薬になりつつある[84-89]。In vitro実験系およびSTZ-NAラットを用いて評価したシタグリプチンのDPP-IV阻害作用は、低濃度から強力、かつ24時間持続した。STZ-NAラットを用いたOGTT試験では、シタグリプチンは速やかなインスリン分泌を伴う血糖降下作用を示した。さらにGLP-1が保持されている状態でも、食間での血糖値を低下させることはないことも報告されている[84-89]。本実験でもシタグリプチン処置群で、食間の低血糖を観察しなかった[84-89]。

DPP-IV阻害薬は糖尿病の薬物治療において有用な薬物の一つであるが、過度の食後高血糖を示す患者では、DPP-IV阻害薬のみの処置では十分な血糖降下の作用を得られないことがある[90]。一方、DPP-IV阻害薬による血中インスリン濃度が上昇しないにもかかわらず、グルカゴン分泌抑制を介して、血糖値の改善を示す
患者の症例も報告されている[91]。このような患者では、食後のインスリンの絶対量不足に伴う食後過血糖の症状を呈することから、更なるインスリンの分泌が必要される。その対処法として、一般的にインスリン分泌促進薬のグリベンクラミド等の SU 薬が併用される。しかしながら、SU 薬との併用療法では食間の低血糖リスクを増悪させることが報告されている[77-80]。本研究でも、グリベンクラミドは食後の血糖値上昇のピークを抑制せず、食間の低血糖リスクを増大させた。シタグリプチンとグリベンクラミドの併用でも、食直後の血糖値上昇のピークに対して上乗せ効果を示さず、食間の低血糖リスクが改善されることは無かった。これらの結果は、両薬物のインスリン分泌を促進させる時間的な差異によるものと考えられた。すなわち、シタグリプチンは糖負荷後速やかにインスリン分泌を促進させるものの、グリベンクラミドのインスリン分泌は糖負荷後 2 時間目以降であったためと考えられた。臨床では、低血糖リスクを回避するために SU 薬の減量が行われている。本実験結果から、SU 薬の減量では低血糖リスクを回避できる可能性はあるものの、食直後の過血糖を改善する効果は期待できないことが示された。

ミチグリニドの作用機序は、膵ラングヘルハス島 β 細胞の sulfonylurea receptor 1 (SUR1) への結合を介したインスリン分泌促進によるものである。その様式は速効性かつ短時間型作用を特徴とする点が SU 薬の作用とは異なる。臨床で、ミチグリニドは単独投与でも食後血糖値の急激な上昇を抑制し、空腹時血糖値および HbA1c 値を低下させることや、低血糖リスクが低いことが報告されている[71]。正常ラットを用いたミチグリニドとシタグリプチンとの併用検討で、シタグリプチンはグルコース負荷に応答し上昇した門脈血漿中の活性型 GLP-1 濃度を上昇させたが、ミチグリニドはグルコースによる活性型 GLP-1 濃度の上昇に影響をしなかった。シタグリプチンによる活性型 GLP-1 濃度の上昇は、ミチグリニドの併用でも影響を受けなかったことも報告されている[92]。これらの結果は、両薬物の併用によるインスリン分泌の促進反応にミチグリニドは、活性型 GLP-1 濃度の上昇に関与しないことを示しており、ミチグリニドが in vitro および in vivo 実験系で DPP-IV への直接阻害作用を示さないこととは、この結果と合致する。本研究結果で、ミチグリニド単独投与では、糖負荷後速やかに血漿インスリン濃度が上昇したも
のの、食間のインスリン分泌促進は観察されなかった。ミチグリニドとシタグリプチンとの併用でも、ミチグリニドはシタグリプチンの糖負荷直後のインスリン分泌に上乗せしたものの、食間のインスリン分泌には全く影響しなかった。これらのことから、ミチグリニドと DPP-IV 阻害薬の併用は、シタグリプチンの作用を増強させ、かつこれら薬物の併用で食間の低血糖リスクを回避できる可能性が示された。

上述したように、ミチグリニドは DPP-IV 阻害薬との併用で、食後血糖値の上昇のみを抑制し、食間の血糖値を低下させた SU 薬の作用とは異なることを示した。本実験結果から血糖値を適切にコントロールするためのインスリンを分泌させるタイミングおよび分泌時間の重要性が示された。臨床でも、ミチグリニドとシタグリプチンとの併用は単独投与に比較して強力な血糖降下作用を示すだけでなく、低血糖を誘発しないことが報告されている[33, 34]。一方、SU 薬は DPP-IV 阻害薬との併用により、低血糖リスクを 50%増加させることも報告されている[93-95]。これらのことから、本モデルを用いたミチグリニドと併用薬の効果の評価は妥当であるとともに、得られた実験結果が臨床成績を裏付けるものであることが示された。つまり、ミチグリニドと DPP-IV 阻害薬との併用投与は、食後の血糖降下作用を増強させ、かつ食間の低血糖リスクは小さい薬物療法が可能であることを提示した。

4.6 章括

本章では正常および STZ-NA ラットを用い、シタグリプチンの DPP-IV 阻害活性へのミチグリニドの作用について検討した。さらに、シタグリプチンとミチグリニドの併用あるいはグリベンクラミドの併用が血糖値、血漿インスリン値および DPP-IV 阻害活性に及ぼす効果について検討した。

(1) In vitro 実験系または STZ-NA ラットでミチグリニドは DPP-IV 阻害活性を示さず、さらにシタグリプチンとの併用でもシタグリプチンの DPP-IV 阻害作用に影響しなかった。

(2) シタグリプチンは、血糖値依存的にインスリン分泌を促進させることで血糖降下作用を示すとともに、食間の低血糖リスクの出現率は低かった。
(3) ミチグリニドはグルコース投与初期のインスリン分泌を促進させ、ミチグリニドとシタグリプチンとの併用ではグルコース投与初期の血糖降下作用のみを增强した。

(4) グリベンクラミドはシタグリプチンとの併用時に食間のインスリン分泌を増強させ、食間の血糖値を低下させた。

本章の検討でミチグリニドは DPP-IV 阻害薬との併用により、食間の低血糖リスクを回避しつつ、食後の血糖降下作用を増強させた。これらの結果から、ミチグリニドと DPP-IV 阻害薬の併用は、DPP-IV 阻害薬単独投与で食後血糖値の制御が不十分な糖尿病患者を治療するための、有益な薬物の組み合わせであることを示した。
5．総括

人口の増加および生活レベルの変化により、2型糖尿病患者は世界で増加の一途をたどっている。糖尿病は血糖値の上昇に伴う糖毒性が様々な合併症を引き起こす。その中でも糖尿病性腎症は最終的には腎不全に至り、人工透析が必要となる。糖尿病に関する現状は我が国における医療費の増加の一因となっている[96, 97]。

糖尿病への対処では糖尿病発症を抑制する一次予防と糖尿病患者の合併症を防止する二次予防の強化が課題である。現在、糖尿病の治療には、運動療法・食事療法に加えて様々な薬物の単独療法そして併用療法が採用されている[96]。いずれの治療方法でも、最終目標は食後の高血糖を改善することによる合併症の予防であることは論を待たない。それゆえ、糖尿病の薬物治療は、患者の症状に合わせた、適度な血糖管理が必要とされる。そのために、作用機序の異なる様々な糖尿病治療薬の併用療法が主流となっている[96]。

耐糖能異常の患者に対する近年の大規模臨床試験から、食後高血糖の是正が、糖尿病発症を抑制するだけではなく、高血圧および心血管疾患の発症リスクを減少させ、かつ動脈硬化症の発症・進展も抑制する可能性が示された[98]。加えて、食後高血糖は網膜症、認知機能障害および特定の癌の発症までその関連性が指摘されている[14-19]。したがって、食後高血糖の是正を目的とした早期からの薬物介入は、糖尿病発症のみならず合併症を抑制する臨床的意義を有すると考えられている。

ミチグリニドは早期かつ短時間のインスリン分泌作用により食後高血糖を是正する薬物である。我が国ではミチグリニドは単独投与による治療に加え、様々な糖尿病治療薬との併用による薬物治療に用いられている[31-34]。本研究では、ミチグリニドと5種類6薬の経口血糖降下薬の併用効果について検討した。

第1章でインスリン抵抗性改善薬であるメトホルミンおよびピオグリタゾンはZFラットへの反復投与でインスリン抵抗性を軽減し、高血糖並びに高インスリン血症を改善した。ここにミチグリニドを併用することで更なる血糖降下作用とインスリン分泌の節約作用がみられた。インスリン抵抗性改善薬とミチグリニドの
組合せにおいて、ミチグリニドはインスリン分泌で、メトホルミンあるいはピオグリタゾンは食後の高血糖改善効果で2薬併用による治療上の有益性が認められた。ミチグリニドとこれら薬物との併用は、食後血糖値が高いインスリン抵抗性改善薬を使用する患者および夜間あるいは空腹時の血糖値が高いミチグリニドを使用する患者に有効と考えられた。

第2章において、STZ-NAラットを用いた実験結果から、食後血糖降下作用を示すミチグリニドとボグリボースは併用で各々の作用に干渉することなく、より強力な食後血糖降下作用を示した。ミチグリニドはインスリン分泌量の節約効果で、ボグリボースは生理的なインスリン分泌の付加で併用による治療上の有益性が認められた。単回の両薬物の併用は、食後血糖上昇を是正したい糖尿病患者、特に食後の血糖値のみが高くなるIGT患者には食間の低血糖リスクが小さく、かつ食後の血糖上昇を強力に抑制できる有効な薬物の組合せになると考えられた。さらにZDFラットを用いた実験結果から、ミチグリニドとボグリボースの併用は膵ランゲルハンス島の病理組織学的な変性を抑制し、糖尿病の症状進行を遅延させた。糖尿病での膵臓組織、特に膵ランゲルハンス島の保護は、インスリン分泌能の維持に重要であり、糖尿病病態の進展を阻止するための重要な治療戦略である[99]。本実験結果は、ともに臨床において食後の過血糖を改善する薬物であるミチグリニドおよびボグリボースが、2型糖尿病患者の病態進展に対して大きな効果を発揮することを期待させる。

第3章において、SGLT2阻害薬であるダパグリフロジンあるいはカナグリフロジンは、ミチグリニドと併用することで相加的に血糖降下作用を増強し、かつインスリン分泌を節約した。さらにミチグリニドの併用は、SGLT2阻害薬の特徴でもある尿糖排泄量をSGLT2阻害薬単独投与のそれと比較しておよそ50%まで減少させた。本章の結果から、SGLT2阻害薬とミチグリニドの組合せで、ミチグリニドはインスリン分泌で、SGLT2阻害薬には尿糖排泄量の低下で両薬物の併用による有益な効果が確認された。これら結果からミチグリニドとのSGLT2阻害薬の併用はSGLT2阻害薬を使用していたながら食後血糖値が高い患者あるいはミチグリニドを使用しながら肥満を伴い、夜間および空腹時の血糖値が高い患者に有効であることが示された。
第4章において、DPP-IV阻害薬シタグリプチンは、ミチグリニドと併用することで相加的な食後の血糖降下作用と食後早期のインスリン分泌作用の増強を示した。さらにシタグリプチンとミチグリニドの併用の効果を、シタグリプチンとSU薬との併用のそれと比較した。その結果、ミチグリニドはシタグリプチンとの併用時にグルコース投与初期のインスリン分泌を促進させることで、グルコース投与初期の血糖降下作用のみを増強した。一方、SU薬グリベンクラミドは、シタグリプチンとの併用時に食間のインスリン分泌を増強させることで、食間の血糖値を低下させた。これらの結果から、血糖値が低下する食間の低血糖リスク発生頻度はミチグリニドの方が低いと考えられた。ミチグリニドとDPP-IV阻害薬の併用は、DPP-IV阻害薬単独投与で血糖値の制御が不十分な糖尿病患者に対し、食後高血糖を制御すると同時に低血糖リスクを回避する薬物治療の有効性と安全性の観点から有益な薬物の組み合わせであることが示された。

今回用いた5種の糖尿病治療薬との併用で、ミチグリニドは相加的な血糖降下作用を示したことから、臨床における併用療法において、単独投与での薬物治療よりも効果的な血糖値の制御を可能にすることが期待される。一般に、経口血糖降下薬の併用では、高血糖状態を改善するために血糖値を低下させると同時に考慮しなければならない問題として、薬物による低血糖がある。2型糖尿病における心血管合併症の抑制を目指した大規模介入試験「ACCORD試験」では、血糖値を低く設定した処置は、合併症を予防できるという観点から実施された。しかしながら、標準治療群（HbA1c平均値7.5%）の死亡例よりも、強化治療群（HbA1c平均値6.4%）の総死亡が約22%増加するという結果となった。血糖値を低くコントロールした群で死亡率が高かった原因の一つとして、低血糖の関与が推測されている[100]。すなわち、糖尿病の治療では、強制的に血糖値を低下させるのではなく、患者での低血糖の発症を回避しつつ、血糖値を低下させる計画的な血糖制御が重要であるとされるようになった[101]。第4章で示した様に、糖尿病治療薬の組合せによっては、インスリン分泌の促進を示すタイミングあるいは分泌時間が異なることに起因して、低血糖の発現リスクを高める危険性が生じる。本試験での一連の試験結果から、ミチグリニドはグルコース投与早期かつ短期間のインスリン分泌で、食後の高血糖状態を改善し、同時に食間での低血糖発現リスクを低
ミチグリニドによる有効事象（腎ラングハンス島β細胞の疲弊等）も少なくらずあるが、本研究での一連の検討により、他の薬物と併用することにより、ミチグリニドの薬効を発揮させると同時に、有害事象の発生を回避することができることを示した。また、本試験結果から、ミチグリニドとの併用で相加的な血糖降下作用が認められたことは、単純な薬物の作用強化には留まらず、単独投与の服用量を減量することにより、血糖降下作用を維持しながら各糖尿病治療薬が抱えている有害事象を弱減させる可能性も示された。すなわち、今回の薬物とミチグリニドとの併用によりそれぞれの服用量を減量することは、血糖降下作用を維持しながらメトホルミンおよびビオグリタゾンでは胃腸症状、ケトアシドーシス、心不全や膀胱がんの発症リスク、α-GI薬は下痢などの消化器系の副作用、ミチグリニドは腎ラングハンス島β細胞の疲弊の軽減が可能になると期待させる[7,8,9]。

本研究でのミチグリニドでの一連の薬物併用の検討は、血糖値およびインスリン分泌の解析により、併用薬としてのミチグリニドの有用性を動物モデルで初めて示すことができた。近年、作用機序の異なる様々な血糖降下薬の併用が可能になっており[6,96]、血糖値を下げるだけでなく、2型糖尿病患者の症状に合わせた薬物選択をする治療の重要性が注目されている。ミチグリニドが対象とする糖尿病患者は食後の血糖値のみが高い、軽症の患者が中心となる。しかしながら、現在の薬物で制御が難しい食後高血糖の抑制を目的として併用薬を選択する場合、食後早期の生理状態に近似したインスリン分泌により食後の血糖上昇を抑制するとともに、低血糖リスクが少ない速効性インスリン分泌促進薬は併用療法に適した有用な糖尿病治療薬の一つと考えられる。今後、2型糖尿病への薬物が増加していく中で、単独投与の効果だけでなく、複数の薬物併用時の特性およびその有用性を考慮することの重要性を明らかにした本研究が2型糖尿病患者の治療におけ
る薬物選択の一助となることを期待する。

6. 謝辞

稿を終えるにあたり、本学位論文の発表の機会と終始御懇切なる御指導を賜りました東京薬科大学薬学部病態生理学教室 教授 市田公美 博士に深甚なる感謝の意を表します。

本学位論文を御高閲いただきました東京薬科大学薬学部機能形態学教室 教授 馬場広子 博士、分子細胞病態薬理学教室 教授 田野中浩一 博士および臨床薬理学教室 教授 平野俊彦 博士に心より感謝の意を表します。

本研究に際し、多大な御支援と多くの発表の機会を与えてくださいましたキッセイ薬品工業株式会社代表取締役 最高経営責任者 神澤陸雄 会長並びに最高執行責任者 両角正樹 社長に深く感謝いたします。

本研究に際し、多大な御支援と御援助をいただきましたキッセイ薬品工業株式会社取締役研究本部長 菊池伸次 博士、信頼性保証本部 金子薫 本部長、信頼性保証本部信頼性調査部長 丸山和容 博士、研究本部参与 小林護 博士、研究本部研究管理部長 今井庸介 博士、研究管理部参与 山崎芳伸 博士に深く感謝いたします。また、御指導をいただきました慈恵医科大学第三病院診療部長 森豊 博士、研究本部薬理・薬物動態研究所所長 武田裕夫 博士、研究本部薬理・薬物動態研究所薬理研究グループマネージャー 立道聡 博士、研究本部研究統括部研究推進グループ専任課長 木口純好 博士、研究本部研究統括部研究企画グループ専任課長 生島一真 博士、基盤技術研究所 中野茂 博士に深く感謝いたします。さらに、実験に協力ご協力いただいた井上俊浩 氏、矢口篤氏、横山綾香 氏、実験動物の飼育にご協力いただいた皆様に感謝いたします。

最後に本学位論文作成に当たり、陰ながら支えてくれました両親 赤羽貞幸・素子、妻 織恵に感謝いたします。
7. 主論文目録
本学位論文は以下の学術論文を主論文とした。

8. 参考文献目録
本学位論文は以下の学術論文を参考文献とした。

1) 生島 一真, 中嶋 郁美, 赤羽 研二, 井上 俊浩, 戸前 昌樹, 小泉 隆, 保屋野 雄志, 草間 寛. ミチグリニドカルシウム二水和物とボグリボース併用反復投与による肥満 2 型糖尿病モデル Zucker diabetic fatty（ZDF）ラットの病態進展抑制効果 新薬と臨床 2011; 60:716-31.
9. 博士学位申請論文審査

東京薬科大学薬学研究科における博士学位申請論文審査では、下記の先生方に主査および副査として審査をいただいた。

主査
東京薬科大学薬学部病態生理学教室 教授 市田公美 博士

副査
東京薬科大学薬学部機能形態学教室 教授 馬場広子 博士
東京薬科大学薬学部分子細胞病態薬理学教室 教授 田野中浩一 博士
東京薬科大学薬学部臨床薬理学教室 教授 平野俊彦 博士
10. 引用文献

1) 赤沼 安夫, 本田 律子, 戸辺 一之. 糖尿病の歴史 日本内科学会雑誌 創立100周年記念号 2002; 91: 135-41

2) 島 慎二 余田 充. 藤原道長の糖尿病についての文献的考察, Diabetes Frontier 2015; 26: 625-31

44) 環境省. 実験動物の飼養及び保管並びに苦痛の軽減に関する基準, 2016

57) Zhu M, Miura J, Lu LX, Bernier M, DeCabo R, Lane MA, Roth GS, Ingram DK.

73) Bolinder J, Ljunggren O, Johansson L, Wilding J, Langkilde AM, Sjöström CD, Sugg J, Parikh S. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. *Diabetes Obes Metab* 2014; 16: 159–69

82) 生島 一真, 赤羽 研二, 中嶋 郁美, 井上 俊浩, 戸前 昌樹, 小泉 隆, 保屋野 健志, 草間 寛. ミミチグリニドと DPP-4 阻害薬シタグリブチンの併用効果 新薬と臨床 2011;60:881-96.

Holst JJ, Deacon CF. Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes. *Diabetes* 1998; 47: 1663-70

