論文内容の要旨

抗微生物薬の使用とメチシリン耐性黄色ブドウ球菌の変遷に関する研究

黄色ブドウ球菌は、健康なヒトの常在菌として手指、鼻前庭、咽頭部などに分布している。その一方で様々な毒素を産生し、種々の感染症の起因菌としても知られている。また、薬剤耐性を獲得しやすいため、院内感染の主要な原因菌の一つとなっている。1940年代にpenicillinが実用化されたことにより、黄色ブドウ球菌による感染症は大きく減少した。しかし、その数年後にはpenicillin耐性黄色ブドウ球菌が出現し、大きな問題となった。その対策として、penicillin耐性黄色ブドウ球菌に有効なmethicillinが開発されたが、これにも耐性化したのがメチシリン耐性黄色ブドウ球菌(MRSA)である。MRSAのβ-lactam系薬耐性機構は、β-lactam系薬の標的部位であるペニシリン結合タンパク質(PBP)の代替となる、薬剤低親和性の新規PBP2'の産生である。そのため、MRSAはpenicillin系薬、cephem系薬、carbapenem系薬などのほとんどのβ-lactam系薬に耐性を示す。

MRSAは当初、抗菌薬が汎用される医療施設を中心に流行していたが、近年、市中でも流行が確認されている。さらに、入院患者から分離されるMRSAと市中の外来患者や健常者から分離されるMRSAの抗菌薬感受性や分子疫学的特徴は大きく異なることがわかった。そのため、前者は院内獲得型MRSA(hospital-acquired MRSA: HA-MRSA)、後者は市中獲得型MRSA(community-acquired MRSA: CA-MRSA)と呼ばれている。このように、MRSAは抗菌薬の使用によって誕生し、その使用状況に応じて進化(変化)している。

病院内において、薬剤耐性菌の出現や蔓延を防止するために、薬剤師が抗菌薬の適正使用支援チーム(antimicrobial stewardship team: AST)の中心的役割を担う
ことが期待されている。そのためには、病院内の抗微生物薬の使用状況や薬剤耐性菌の流行状況を把握し、最適な薬剤を提案できる資質が求められている。本研究では、薬剤師によるAST活動の一環として、抗微生物薬の使用率とMRSAの変遷について、臨床データと基礎データの両面から解析した。

【第1章】MRSAの分子疫学的特徴と抗微生物薬使用率の変化
現在、CA-MRSAの市中から病院内への伝播が大きな問題となっている。
CA-MRSAは、HA-MRSAよりもβ-lactam系以外の抗菌薬に高い感受性を示すことが多い。しかし、基礎疾患のない健常者にも重症感染症を引き起こすことから、HA-MRSAよりもも病原性が高いとされている。病原性の高いCA-MRSAが易感染性患者の多い病院内で増加した場合、深刻なアウトブレイクの発生が懸念される。そこで、本章では、入院患者から分離されるMRSAの変遷と病院内の抗微生物薬使用率の関連性について研究した。

2010年7月から2016年5月に東京慈恵会医科大学附属病院の入院患者から分離されたMRSA600株についてSCCmectypingを行ったところ、2010年ではHA-MRSAに多いSCCmec type IIが全体の61.8%（47株）を占めていたが、2014年から減少し、2016年では32.0%（8株）と有意に減少した（Fig.1）。一方、CA-MRSAに多いSCCmec type IVは2014年から増加し、2015年以降は主流となっていた。

Table 1. Antimicrobial susceptibility of MRSA isolates obtained between 2010 and 2016.

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>2010-2011 (n = 207)</th>
<th>2012-2013 (n = 211)</th>
<th>2014-2016 (n = 182)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC<sub>50</sub>/MIC<sub>90</sub> (µg/mL)</td>
<td>R (%)</td>
<td>MIC<sub>50</sub>/MIC<sub>90</sub> (µg/mL)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>32/32</td>
<td>100</td>
<td>32/64</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>≥256/≥256</td>
<td>99.6</td>
<td>≥256/≥256</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>≥256/≥256</td>
<td>86.5</td>
<td>≥256/≥256</td>
</tr>
<tr>
<td>Levofoxacin</td>
<td>≥256/≥256</td>
<td>87.4</td>
<td>≥256/≥256</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>≥256/≥256</td>
<td>87.4</td>
<td>≥256/≥256</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>≥256/≥256</td>
<td>75.4</td>
<td>≥256/≥256</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>32/128</td>
<td>60.9</td>
<td>16/128</td>
</tr>
<tr>
<td>Minocycline</td>
<td>4/16</td>
<td>34.8</td>
<td>2/16</td>
</tr>
<tr>
<td>Sulfamethoxazole-Trimethoprim</td>
<td>0.5-0.13/1-0.25</td>
<td>0</td>
<td>0.5-0.13/1-0.25</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>1/1</td>
<td>0</td>
<td>0.5/1</td>
</tr>
<tr>
<td>Teicoplanin</td>
<td>1/2</td>
<td>0</td>
<td>0.5/1</td>
</tr>
<tr>
<td>Lincomycin</td>
<td>0.5/1</td>
<td>0</td>
<td>1/1</td>
</tr>
<tr>
<td>Arbekacin</td>
<td>0.5/1</td>
<td>0</td>
<td>0.25/1</td>
</tr>
</tbody>
</table>

MIC₅₀/MIC₉₀, minimum inhibitory concentrations (µg/mL) for inhibiting the growth of 50% / 90% of the strains;
R, rate of resistant strains. *P < 0.05 vs. percentage of strains in 2010-2011, as determined by the χ² test.
増加した SCCmec type IV および減少した SCCmec type II 株の詳細な分子疫学的特徴を解析するため、MLST 解析により遺伝子型を決定した。その結果、SCCmec type II 株は、2010 年と 2016 年共に、全ての菌株が HA-MRSA の遺伝子型である clonal complex (CC) 5 であった。一方、SCCmec type IV 株で最も高頻度に認められたのは、CA-MRSA の遺伝子型である CC8 であり、2010 年では 55.6% (10/18 株)、2016 年では 45.5% (10/22 株) であった。また、CA-MRSA の遺伝子型である CC1 は、2010 年では 5.6% (1/18 株) であったのに対し、2016 年では 22.7% (5/22 株) と 4 倍に増加していた。

各種抗菌薬の感受性を解析した結果、cephalosporin 系の cefotaxime および lincomycin 系の clindamycin の耐性率が年々低下し、2014 年から 2016 年分離株では 2010 年から 2011 年分離株よりも有意に低かった (P < 0.05) (Table 1)。さらに、HA-MRSA の遺伝子型である CC5-SCCmec type II (CC5-II) 株、CA-MRSA の遺伝子型である CC8-IV 株および CC1-IV 株の薬剤感受性を比較した。その結果、CC8-IV 株および CC1-IV 株の cefotaxime および clindamycin の耐性率は、CC5-II 株よりも有意に低かった (P < 0.05)。したがって、上述した HA-MRSA の減少と CA-MRSA の増加によって、入院患者から分離される MRSA の抗菌薬感受性が変化していることが明らかとなった。次に、病院内の抗菌薬使用密度 (Antimicrobial use density: AUD) を解析した結果、β-lactam 系抗菌薬の使用率が大きく変化していた (Fig. 2)。このうち、penicillin 系薬の使用率が増加し、cephalosporin 系薬の使用率が減少していた。

近年、広域スペクトルから狭域スペクトルの抗菌薬にシフトする de-escalation 療法が推奨されている。さらに、抗 MRSA 薬や広域スペクトル抗菌薬使用時の届出制導入等も加わり、抗菌薬の適正使用に向けた AST 活動が積極的に行われている。これによって、病院内の cephalosporin 系薬の使用率が大きく減少したと考えられる。また、このような抗菌薬の使用率の変化が、MRSA の流行型の変化にも影響している可能性が示された。
第2章 消毒薬低感受性MRSAの分離頻度と手指消毒薬使用量の変化

MRSAの接触感染を予防するために、種々の手指消毒薬が使用されている。しかし、多剤排出ポップQacA/Bをコードするプラスミド性の遺伝子qacA/Bを獲得し、消毒薬に低感受性を示すMRSAが分離されている。

QacA/Bはアミノ酸配列の相違から、QacA、QacBI～QacBIVの5つのサブタイプに分類されるが、その流行状況は不明である。本章では、病院内における消毒薬低感受性MRSAの流行状況と、手指消毒薬使用量との関連性について研究した。

消毒薬耐性遺伝子qacA/Bの保有率は、600株中199株（19.8%）であった。qacA/Bを詳細に分類したところ、qacAが56.8%（113/199株）、qacBIIIが28.6%（57/199株）、qacBIIが14.6%（29/199株）であり、qacAが主流であった。また、qacA/Bの検出率は年々減少し、2010年では50.0%（38/76株）であったが、2016年では4.0%（1/25株）と大きく減少した（Fig.3）。特に、qacA陽性株の減少が著しく、2010年34.2%（26/76株）から、2012年以降は有意に減少していた。一方、qacB陽性株の有意な減少は認められなかった。各種消毒薬の感受性を測定した結果、2010年分離株と比較して、2016年分離株の90%の菌株に対し発育を阻止した最小発育阻止濃度（MIC90）値は、benzalkoniumが1/2、chlorhexidineが1/4に低下していた。

さらに、qacA/B陽性MRSAのSCCmec typeを解析したところ、qacA陽性株の81.4%、qacBIII陽性株の80.7%がHA-MRSAに多いSCCmec type II、qacBII陽性株の93.1%がCA-MRSAに多いSCCmec type IVであった。一方で、病院内の手指消毒薬（0.2%benzalkoniumhandrub、80%ethanol、0.2%chlorhexidinehandrub）の総使用量は年々増加しており、2010年では……
13.7 L/1,000 patient-days であったのに対し、2016年では3倍以上の45.0 L/1,000 patient-days であった (Fig. 4)。これに伴い、MRSA 感染症の新規発生指数は2010年の0.50から年々減少し、2016年の0.18と約1/3にまで減少しており、手指消毒薬の年間消費量の増加が、MRSA 発生指数を有意に低下させたことが強く示唆された \((r = -0.975, P < 0.001) \)。

本章の結果から、消毒薬に低感受性を示す qacA/B 陽性 MRSA の著しい減少、手指消毒薬の使用量増加、MRSA 発生指数の減少が明らかとなった。東京慈恵会医科大学附属病院では AST 活動の一環として、すべての教職員に対して、感染対策に関する研修会へ年2回以上参加の義務化や病棟毎に手指消毒薬使用量を算出・提示している。このような活動が、院内の手指消毒薬使用量の増加に大きく貢献し、その結果として、qacA 陽性株の減少と MRSA 発生指数の減少に繋がったと考えられる。

【総括】
薬剤耐性 (Antimicrobial Resistance: AMR) は、国際的な重要課題として認識されている。本邦においても AMR 対策アクションプランが掲げられ、薬剤耐性菌の動向調査・監視が重要項目の一つとなっている。本研究では、薬剤師が AST 活動を通して、病院内の抗微生物薬使用率の変化に伴い、MRSA の流行状況も大きく変化することを明らかにした最初の事例となる。第1章では、病院内におけるcephalosporin 系薬の使用率の減少に伴い、入院患者から分離される主要な MRSA が CA-MRSA に変遷した可能性を示した。第2章では、第1章で示された HA-MRSA の減少によって消毒薬低感受性の qacA 陽性 MRSA が減少し、手指消毒薬使用量の増加に伴い MRSA 発生指数が減少した可能性を示した。本研究成果によって、薬剤師が AST 活動において抗微生物薬の使用量などの臨床データと、薬剤耐性菌の分子疫学的解析などによる基礎データの両者を解析することによって、AMR 対策に大きく貢献できることが示された。

【研究成果の掲載誌】
(2) Microbial Drug Resistance. in press (2019).
論文審査の結果の要旨

黄色ブドウ球菌はヒトの常在菌であるが、様々な毒素を産生し、種々の感染症の起因菌としても知られている。薬剤耐性を獲得しやすく、ほとんどのβ-ラクタム系薬に耐性を示すメチシリン耐性黄色ブドウ球菌（MRSA）は、院内感染の主要な原因菌である。近年、MRSAは入院患者から分離される院内獲得型MRSA（hospital-acquired MRSA: HA-MRSA）と市中の外来患者や健常者から分離される市中獲得型MRSA（community-acquired MRSA: CA-MRSA）に分類されている。HA-MRSAは多剤耐性性であるが、CA-MRSAはHA-MRSAよりもβ-lactam系以外の抗菌薬に耐性を示すことが多く、健常者にも重症感染症を引き起こすことから、HA-MRSAよりも病原性が高いとされている。これらのMRSAは抗菌薬の使用によって出現し、その使用状況に応じて進化（変化）している。病院内において、薬剤耐性菌の出現や蔓延を防止するために、薬剤師が抗菌薬の適正使用支援チーム（antimicrobial stewardship team: AST）の中心的役割を担っている。そのためには、病院内の抗生物質の使用状況や薬剤耐性菌の流行状況を把握し、最適な薬剤を提案できる資質が求められている。本研究では、薬剤師によるAST活動の一環として、抗生物質の使用率とMRSAの変遷について、臨床データと基礎データの両面から解析した。

第1章では、申請者が勤務する東京慈恵会医科大学附属病院における2010年7月から2016年5月の間に入院患者から分離されたMRSA600株について分子疫学的特徴と抗菌薬使用率の変化について研究した。Methicillin耐性遺伝子をコードするSCCmecのタイピングにより、HA-MRSA型のSCCmec type IIが減少し、CA-MRSA型のSCCmec type IVが増加し、2015年以降は主流となっていることが見出された。さらに、詳細な遺伝子型の解析は、SCCmec type II株は全ての菌株がHA-MRSAの遺伝子型であるelonal complex（CC）5であり、SCCmec type IV株ではCA-MRSAの遺伝子型であるCC8を含め様々なCC株が流行していることを示していた。抗菌薬感受性を解析した結果、cephalosporin系およびlincomycin系のclindamycinの耐性率が年々低下していた。遺伝子型に分けて薬剤感受性を比較したところ、CC8-IV株およびCC1-IV株のcefotaximeおよびclindamycinの耐性率は、CC5-II株よりも有意に低かった（P<0.05）。したがって、院内におけるHA-MRSAの減少とCA-MRSAの増加によって、MRSAの抗菌薬感受性が変化していることが明らかとなった。一方、病院内の抗生物質使用密度（Anti-microbial use density: AUD）を解析した結果、狭域スペクトルのpenicillin系薬の使用率が増加し、広域スペクトルのcephalosporin系薬の使用率が減少していた。最近、広域スペクトルから狭域スペクトルの抗生物質にシフトするde-escalation療法が院内で推奨されている。さらに、抗MRSA薬や広域スペクトル抗生物質使用時の届出制導入等も加わり、抗菌薬の適正使用に向けたAST活動が積極的に行われている。このようなAST活動によって、病院内のcephalosporin系薬の使用率が大きく減少しMRSAの流行型に影響している可能性が示された。

第2章では、MRSAの接触感染予防のために汎用される手指消毒薬と消毒薬低感受性に関する消毒薬耐性遺伝子qacA/Bを持つMRSAについて、病院内における消毒薬低感受性MRSAの流行状況と、手指消毒薬使用量との関連性について研究した。MRSAにおけるqacA/Bの
保有率が年々減少していることを明らかとした。さらに、qacA/Bを詳細に分類したところ、qacAが主流であり、qacA陽性株の減少が著しかった。それに伴い、四級アンモニウム系やビグアナイド系手指消毒薬に対する抵抗性が低下していた。一方で、病院内の手指消毒薬の総使用量は年々増加しており、2016年では2010年と比較して3倍以上の45.0L/1,000patient-daysであった。これに伴い、2016年におけるMRSA感染症の新規発生指数は2010年の約1/3にまで減少しており、手指消毒薬の年間消費量の増加が、MRSA感染症発生指数を有意に低下させたことが強く示唆された。申請者が勤務する大学病院ではAST活動の一環として、感染対策の研修会参加の義務化や病棟毎に手指消毒薬使用量を算出・提示している。このような活動が、病院内の手指消毒薬使用量の増加に大きく貢献し、その結果として、qacA陽性株の減少とMRSA感染症発生指数の減少に繋がったと考えられる。

以上、原田氏の論文は、主要な院内感染原因菌であるMRSAの分子疫学的基礎データと病院薬剤師のAST活動における抗微生物薬の使用量などの臨床データの両方から解析し、病院内の抗微生物薬使用率の変化に伴い、MRSAの流行状況やMRSA感染症発症指数が大きく変化することを明らかにし、2報の原著論文としてまとめたものである。本研究成果は、薬剤師のAST活動における薬剤耐性菌感染症対策に大きく貢献する臨床薬学において価値あるものである。従って、本論文は、博士(薬学)の学位論文として相応しいものと判断する。